Actes Metti7_2019


Foreword: Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is an inverse problem. This is met in different areas of physical sciences, especially in Heat Transfer. Techniques for solving inverse problems as well as their applications may seem quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional data processing techniques for estimating the parameters of a model with the maximum accuracy feel often ill prepared in front of inverse techniques.

 In order to avoid biases at different levels of this kind of involved task, it seems compulsory that specialists of measurement inversion techniques, modelling techniques and experimental techniques share a wide common culture and language. These exchanges are necessary to take into account the difficulties associated to all these fields. It is in this state of mind that this school is proposed.

The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the French Heat Transfer Society (SFT), has already run or co- organized six similar schools, in the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquère-Odeillo, 1999), in Brasil (Rio de Janeiro, 2009), in Bretagne (Roscoff, 2011) and in Pays Basque (Biarritz, 2015). The seventh edition of the school was again open to participants from all over the world with the support of the Eurotherm Committee.


Scientific coordination



Jean-Luc BATTAGLIA – I2M Bordeaux France

Université de Bordeaux – ENSAM & CNRS


Fabrice RIGOLLET – IUSTI Marseille – France

Université d’Aix-Marseille & CNRS


Joyce Bartolini, IUSTI, Marseille

Université d’Aix-Marseille & CNRS


Denis MAILLET – LEMTA Nancy France

Université de Lorraine & CNRS

Jean-Laurent GARDAREIN– IUSTI Marseille France

Université d’Aix-Marseille & CNRS


NB: The next edition of this school, Metti 8, will take place from Sept. 24 to 29, 2023 in the “Ile d’Oléron” in  France, see




Lecture 1 - Getting started with problematic inversions with three basic examples

     P. Le Masson, O. Fudym, J.-L. Gardarein, D. Maillet

L1-Le Masson final-reluJLB.pdf


Lecture 2 - Advanced measurents with contact in heat transfer: principles, implementation and pitfalls

                   F. Lanzetta, B. Garnier

L2-Lanzetta Garnier final-reluJLG.pdf

Lecture 3 - Basics for linear inversion: the white box case

                    F. Rigollet, D. Maillet

L3-Rigollet final_JLB+DM+TP+FR.pdf

Lecture 4 - Measurements without contact in heat transfer


     Part A - Radiation thermometry : principles, implementation and pitfalls

                  J.C. Krapez

L4-part A-KRAPEZ apres coup.pdf


     Part B - Quantitative Infrared Thermography

     H. Pron, L. Ibos

L4-part B-Ibos final.pdf

Lecture 5 - Nonlinear parameter estimation problems: tools for enhancing metrological objectives

                  B. Rémy, S. André and D. Maillet

L5-Rémy et al final_JLB.pdf

Lecture 6 - Inverse problems and regularized solutions

    J.C. Batsale, O. Fudym, C. Le Niliot

L6-Le Niliot final-relu DM-JCB-V4-8 Juin&19Juillet22.pdf

Lecture 7 - Types of inverse problems, model reduction, model identification
               Part A – Experimental identification of low order model

               J.-L. Battaglia

L7-part A-Battaglia final-ReluDM2fois&JLB-25Juillet22.pdf


               Part B Modal reduction for ther Y. Jarny, D. Mailletmal problems: Core principles and presentation of the AROMM method

   F. Joly, Y. Rouizi, O. Quéméner

L7-part B-Quemenerfinal_ReluDM.pdf


Lecture 8 - Function estimation in inverse heat transfer problems

      Y. Favennec, P. Le Masson, Y. Jarny, D. Maillet

L8-Favennec final avecCorrectionsYF-reluDM.pdf

Lecture 9 - The use of techniques within the Bayesian framework of statistics for the solution of inverse problems

       H.R.B.  Orlande: Jean-Luc

L9-Orlande final_JLB-1.pdf



:::::::::::::: Contacts :::::::::::::: Infos légales ::::::::::::::