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Abstract. We present and illustrate the roadmap for a linear parameter estimation problem, in 
the case when the structure of the model is known ('white box case'). The Ordinary Least 
Square case is first considered to introduce all the useful tools (sensitivity coefficients, 
conditioning, etc). We focus then on optimal ways to implement the best estimation through 
the study of the sensitivity matrix and other matrices depending on it. The propagation of bias 
on blocked parameter during the estimation of desired parameters is also studied. 

 
1. Introduction 
 
We present and illustrate the roadmap for a linear parameter estimation problem, in the case 
when the structure of the model is known ('white box case'). The Ordinary Least Square case 
is first considered to introduce all the useful tools. We focus then on optimal ways to implement 
the best estimation through the study of the sensitivity matrix and other matrices depending on 
it. 
 
 

2. The roadmap for solving a linear parameter estimation problem: the Ordinary 
Least Square case 
 

2.1. Generate data 
 

Let us suppose we have realised an experiment that provides m measurements  for 

i =1, …, m at m discrete values of time t (the 'independent' variable). These measurements are 

the components of the vector (m × 1) of experimental measurements . 

Times of measurements are regularly spaced between  and  and are the components 

of the time vector (m × 1)  with , i=1, …, m. Let  be the 
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(unknown) error associated to the measurement  (i=1, …, m), then the measurement errors 

vector (m × 1) is . Some assumptions have to be done on these 

measurement errors. They are detailed in Table 1.  

Number Assumption Explanation 

1 Additive errors  

2 Unbiased model  

3 Zero mean errors  

4 Constant variance  

5 Uncorrelated errors  for  

6 Normal probability distribution  

7 
Known parameters of the probability density 
distribution of errors 

 

8 No error in the Sij S is not a random matrix 

9 No prior information regarding the parameters   

Table 1 : Statistical assumptions regarding the measurement errors 

The first assumption on measurement errors is that they are purely additive :  

 (3. 1) 

Here  represents the vector (m × 1) of (unknown) errorless measurements, which 

corresponds to the output of a model that is assumed to be perfect2. Moreover, measurement 
errors are assumed to be the realizations of a random variable with any distribution but with a 
zero mean, that is  (unbiased errors),  being the expected value operator 

(representing the mean of a large number of realizations of the random variable). On its main 

diagonal, the covariance matrix (m × m)  of 

measurements errors contains the variance  of each measurement that is supposed 

constant for each time ,   i = 1, …, m. This variance may or may not be known. Finally, 

measurement errors are assumed uncorrelated (error at time  is independent of error at time 

 (  for )  and  consequently  is a diagonal matrix: 

 (3. 2) 

These data (3.1) can come from a real experiment or can have been numerically created (for 
testing the parameter estimation method), using a mathematical model and adding a numerical 

                       

2 The objective of  'direct' modelisation is to give the best approximation of   
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random noise verifying the preceding assumptions. Now the model and its parameters will be 
presented.  

2.2. Build a model of the measured signal, define the parameters and first contact with the 
sensitivities 

The objective of such a model is to give a mathematical expression, noted  

of the perfect measurements  mentioned above. This model is a function of the 

independent variable (time) and of n parameters composing the parameters vector (n × 1) 

noted . The model vector (m × 1) is then given by 

, where is a column 

vector composed of the m times of measurements ti. For this example, we choose to analyse 
the classical two parameters estimation problem consisting in estimating simultaneously the 
slope and the intercept of a straight line; then the model is given, in a scalar writing, by: 

 (3. 3) 

The model is linear with respect to its two parameters  and  because:  

 (3. 4) 

 
Important remark: the following model: 

 (3. 5) 

is also linear with respect to its two parameters  and , even if its time behavior is not linear. 

On the contrary, the following model: 
 

 (3. 6) 

 

is linear with respect to  but nonlinear with respect to  and is consequently nonlinear with 

respect to . 
 

Writing the m model values (3. 3) for the m time values , the m resulting equations 

can be written in a matrix way as follows: 
 

  (3. 7) 

or, in a more compact form: 
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 (3. 8) 

The matrix S (m × n) is called the sensitivity (or Jacobian) matrix. Column k contains the m 

times values of the sensitivity coefficient of the model with respect to the parameter , given 

by : 

 , k=1, …, n (3. 9a) 

 
Equation (3. 8) is only valid for a linear model. However, the sensitivity coefficient (3.9a) can 

be defined for the discrete time values (i =1, …, m) to form a sensitivity matrix S 

defined for any linear or nonlinear model as: 
 

( )( )
tt

x mo= ∇S x y                                                          (3.10a) 

or, more simply, in a symbolic way  

                           (3.10b) 

 

 
Let us note here that the nabla operator x∇  , of dimensions x 1n , can be  applied either to a scalar 

or to a row vector. So, 
 

• 

1

2x

n

z

x

z

xz

z

x

∂ 
 ∂
 
 ∂
 ∂∇ =  
 
 ∂ 
 ∂ 

  if z is a scalar                                                             (3.10c) 

• 

1 2

1 1 1

1 2

2 2 2

1 2

m

m

x

m

n n n

z z z

x x x

z z z

x x x

z z z

x x x

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂ ∂ ∂
 ∂ ∂ ∂∇ =  
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

z

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

     if it is a row vector noted z  of size 1 x m  (3.10d)
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Let us note here that, in terms of dimensions, the the left product of the operator x∇  with 

another quantity (scalar or matrix), respects the same rule as a normal column vector. For 
example, the dimensions of x∇ z in equation (3.10d) is (n x 1 ) by (1 x m), that is (n x m). 

Important remark: if the model is linear with respect to its parameters (as in the cases (3. 3) 
and (3. 5)), then the sensitivity coefficients do not depend on the parameters:, and the 
sensitivity matrix does not depend on x.  

For model (3. 3), we have  and  then: 

  (3. 10) 

A sensitivity coefficient is a measure of the “influence” of a given parameter  on the 

response of the model . If all the sensitivity coefficients are of “high” magnitude and 

“independent”, the simultaneous estimation of the parameters composing  will be possible. 
The meaning of “high” and “independent” will be developed later. 

 

2.3. Choose the objective function 
 

Assuming that the model has the right form (or “right structure”, given by the resolution of the 
“right” partial differential equations describing the “right” physical phenomena) and is 

calculated with the right values of parameters , then  and Eq. (3. 1) 

becomes 

 (3. 11) 

Since the m measurement errors composing  are not known, the problem of finding the 

values of the n components of  given m measurements verifying Eq. (3. 11) is 

underdetermined (m equations with n + m unknowns: n parameters  (k=1, …, n) and m 

noise values  (i = 1, …, m)). The problem consists in using the m measurements for 

estimating the n unknown parameters, with . Then the new problem to solve is a 
minimization problem. For a given value x of the parameter vector, a residual vector r (m × 1) 
is built in order to calculate the difference between measurement vector y  (m × 1) and the 

corresponding model output  (m x 1), each component of r being associated with one 

of the m instants of time where a measurement is available. 
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 (3. 12) 

This present definition of the residual vector  is an extension of the concept of residual 

vector which is usually defined as ,  where corresponds to the minimum of , see 

Eq. (3.17) further on. 

Then the norm of this residual vector  is calculated, it is a scalar value that will be 

minimized with respect to the different components of parameter x in order to estimate an 

'optimal' value for it. One has to choose the way of computing the norm of the residuals 

. Without any a priori information about the values of the parameters and given the above 
assumptions for measurements errors, the chosen norm is the Euclidian norm (or L2 norm) 
given by: 

    (3. 13))  

In fact, the objective function that will be minimized is the square of that Euclidian norm, it is 
called the 'Ordinary Least Squares' objective function3 :  

 (3. 14) 

In the particular case of a linear model,  and this OLS sum becomes: 
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   x x x    (3.16) 

With a matrix writing, (3.16) is equivalent to : 

              
 (3. 15) 

The solution of this minimization will be called  here. The hat ( ) superscript designates 

an estimator of the corresponding quantity, that is a random variable derived here from the 
random vector variable  (the measurement noise) and the subscript 'OLS' designates the 

specific minimized norm used here, the Ordinary Least Squares sum defined in Eq. (3.14). 

                       
3 it is here the most efficient, i.e. that will provide the estimation with the minimal variance if the noise 
is of zero mean, independent and identically distributed 

[ ] t
mmmomiimoimomo tyytyytyy  ),(),(),()()( ,,11,1 xxxxyyxr −−−=−= ……

)(xr

)ˆ(xr x̂ )(xr

)(xr

)(xr

21

1

2 )()(

/
m

i

ir 












= 

=

xxr

22
)()()( xyyxrx moOLSJ −==

xSxy =)(mo

[ ] [ ])()()(
 

xyyxyyx mo

t

moOLSJ −−=

OLSx̂ ∧

ε

OLSJ



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 

 Lecture 3: Basics for parameter estimation – page 7 / 35 

If the model is linear, this OLS estimator does not require the use of any iterative algorithm 
and is given in a simple explicit form: 

( )( )arg min ( )OLS OLS
ˆ J=x x     (3. 16)  

 
So, the original question was:  

"what are the exact values  of parameter vector x for the model  when m 

corresponding noisy measurements  are available?" 

 
The answer is: 

"one possible approximation of  is the estimator , which minimizes the 

Ordinary Least Squares 'objective' function (sometimes also called 'criterion')  

defined as the sum of the squares of the differences between the m model output and 
the corresponding measurements”.  

 
Or, in simpler words:  

"the natural numerical approximation of the parameters present in  is the one that 
enables the model to be the closest to the whole set of measurements. This Ordinary 
Least Squares method was first found by Carl Friedrich Gauss in 1795 and later 
published by Adrien-Marie Legendre (1805)”. 

  

The natural question that arises next is: "how far is this estimation from the exact value 

 and what can be done to reduce their difference?” These questions will be discussed 

now within the linear assumption where an explicit expression for  will be given. Readers 

interested by non-linear estimation can refer to lecture 7 of this series. 

 

2.4. Solve the parameter estimation problem: minimize the objective function 

The OLS estimator  is defined as the value of parameter vector x that minimizes the 

scalar function . So, it has to verify: 

     (3.19) 

or 

                   

( )( ) ( )( ) 2 ( ) ( )
t

x OLS x mo moJ∇ = ∇ − −x y y x y y x                        (3. 17a)  

 
This equation stems from the following property of the nabla operator x∇ , applied to a scalar 

product of vectors, see (Beck and Arnold, 1977, page 221) in the reference list: 
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( ) ( )2 where is a column-vector of size x 1t t

x x m∇ = ∇z z z z z       (3.20b) 

 

and, as a consequence, is a line-vector of size 1 xt mz  

    
As a consequence,  
 

( )with ( )
t

t

mo x mo= = ∇y S x S x y    (3.21) 

 
  

 

So, 
( )( ) ( )( ) 2 ( ) ( )

t

x OLS x mo moJ∇ = ∇ − −x y y x y y x
                       (3. 17a) becomes: 

 

 (3. 18) 

 

Then  is solution of:  

 

 

 

(3. 19) 

The n equations composing the linear system (3. 19) are called the 'normal equations'. The 

solution is straightforward if the (n × n) matrix  is not singular, it is then possible to compute 

its inverse and obtain: 
 

 (3. 20) 

 

Let us note that it is not necessary to invert matrix , also called information matrix, in order 

to solve the system of normal equations (3.23): Eq. (3.24) can be used further on to yield a 
symbolic explicit expression of the OLS solution. 
 

The (n × m) matrix  is called the Moore-Penrose matrix, also named as the pseudo-

inverse of S. Obviously, a necessary condition for  not to be singular is that the sensitivity 

coefficients are independent, and have a non-zero norm. This condition also requires that the 
number of measurements m be equal or greater than the number of parameters n to be 
estimated.  
 

Eq. (3.24) gives an explicit expression for the ordinary least square estimator  of x for 

any linear model  as a function of measurements y defined in Eq. (3.11). Since 

y is a random vector (because of noise ), such is also the case for . However, equation 

(3.24) has also another statistical meaning: once measurements are available, a realization of 
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y (that is numerical values for its components) becomes available, and this equation provides 
the corresponding OLS estimation of x. 
 

2.5. Evaluate the confidence in estimations (variance and bias of estimator) 

2.5.1. First approach with stochastic simulations (Monte Carlo method) 

 
Before computing the statistical properties of the OLS estimator (expected value and 
covariance matrix), we present a graphical approach that helps to understand the meaning of 
such properties. This approach is possible in the case when two parameters are estimated 

because each estimation  can be plotted as a point in a 2D coordinates 

frame graduated in . The idea is then to simulate K=100 experiments with K different 

realizations of the random noise vector  generated by an independently distributed Gaussian 

process with the same statistical properties (see Table 1) to produce K samples of 

measurements vectors y according to (3.12). The exact output of the model ( ) as well 

as the time of measurements and the standard deviation of the noise used for each simulation 
is given in Table 2. This model structure with this set of associated experimental parameters 
is called the ‘reference case’ Figure 1 shows one of the simulated experiments (circles) and 
the corresponding recalculated model output corresponding to the OLS estimation 

 (red line). 

 

(K/h) 5 

(K) 2 

Model structure   , Eq. (3. 3) 

Number of measurements m 20 

Start of time range tmin 0.5 

Time step dt 0.1 

Noise standard deviation  0.5 

Table 2 : conditions of the K=100 simulated 'reference' experiments. 
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Figure 1 : one of the K=100 experiments of the 'reference case', the corresponding exact model 
and the corresponding recalculated OLS model output. 

The K=100 OLS estimations  are then plotted in a scatter graph graduated 

in  in Figure 2. Because of a different random realization of noise for each of the 100 

experiments, each corresponding OLS estimations  is different, showing 

immediately the consequence of noise measurement on the dispersion of estimations. In that 

figure the position (square) of the exact value  and the position 

(star) of the mean value of the K estimations 

 (the center of the scatter) are very 

close. 

Another interesting way of looking at the estimation results is to plot them in a scatter graph 
with normalized coordinates indicating the distance of each estimation from the center of the 
scatter in %, see Figure 3: 

 

 (3. 21) 

 (3. 22) 

If we consider that  the quantities (3. 21) and (3. 22) that are the relative 

estimation errors in % of   and of . That plot enables to quantify in % the dispersion 

of the estimations of each parameter around its mean value. This dispersion is what one often 
wants to minimize. 

)ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x

),( 21 xx

)ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x

)2,5( 21 === exactexactexact xxx

).x̂,.x̂ˆ
OLS,OLS,mean 0192)(mean9944)((mean 21 ===x

( ) 1111 100 ,mean,meani,,OLSi,,OLS x̂/x̂x̂e −=
( ) 2222 100 ,mean,meani,,OLSi,,OLS x̂/x̂x̂e −=

exactmean xx ≈ˆ
exactx1

exactx2



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 

 Lecture 3: Basics for parameter estimation – page 11 / 35 

  

Figure 2 : dispersion of the 100 estimations 
around their central value (star) that is very 

close to the exact value (square) 

Figure 3 : relative estimation errors in % 
centred and scaled using the mean value of 

the scatter 

 
 

At this point, after having quantified the central value 
 

of the K=100 

estimations and after having evaluated the dispersion of the majority of estimations 
around this central value (that indicates the confidence we associate to it), we can sum 
up the result of the estimation problem in the following way: 
  

"  is equal to  and 

  is equal to " 

 

But in reality, we never realize 100 experiments with 100 estimations  in 

order to calculate the mean value . We generally do one single 

experiment and obtain only one of the 100 points of Figure 2 and Figure 3. We must keep in 
mind that this point can be one of the points 'far' from the exact value! Whatever the realized 
experiment among these 100, what we want to do is to associate a 'confidence region' to the 

particular estimation  (or 'confidence intervals' for each parameter) that 

has about the same dimension than the scatter we have just obtained with these 100 simulated 
experiments. That is the objective of the following section. 

2.5.2. Calculation of statistical properties of the OLS estimator 
 

Here we become more general and we consider the case when not all the n parameters are 

estimated but only r, the (n-r) remaining parameters are supposed to be known and they are 

fixed during the estimation of the r unknown parameters. Usually a parameter is set to a 

supposed known values for two major reasons: i) the model is not sensitive enough to that 

parameters or ii) the sensitivity of the model to that parameter ‘looks like’ the sensitivity to 
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another parameter (see Section 3.1.1). Unknown parameters are noted with subscript r and 

known parameters are noted with subscript c. We must consider that the fixed parameters 

have not been fixed to their exact value, and at the end of estimation of the r parameters, we 

have to evaluate the bias made on the estimations because of the error in the (n - r) parameters 

that are supposed to be known. 

We can split (3. 8) into: 

 (3. 23) 

The matrix  (n × r) is the sensitivity matrix to estimated parameters. It is a part of the 

“complete” sensitivity matrix , relative to all the parameters (unknown   (r × 1) and known 

 ((n-r) × 1)): 

 (3. 24) 

The matrix  (n × r) is the sensitivity matrix to estimated parameters. It is a part of the 

“complete” sensitivity matrix , relative to all the parameters (estimated   (r × 1) and fixed 

 ((n-r) × 1)): 

The OLS solution (3. 20) becomes:   

 (3. 25) 

Let   be the estimated parameters for a value of fixed parameters  different from 

their exact value . Let  be the vector (r × 1) of the estimation error (the difference 

between estimated rx̂  and exact  values of ) and let  be the deterministic error 

(the bias) for the fixed values of the parameters that are supposed to be known: 

 (3. 26) 

 (3. 27) 

One can write, with  the Moore-Penrose matrix: 

 (3. 28) 
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Eq. (3. 11) can be developed: 

 (3. 29) 

Combining Eq. (3. 29) and (3. 28), the estimation error (3. 26) may then be approximated by: 

 (3.34)  

The first term  is the random contribution to the total error; it represents the error due 

to measurement errors  whose covariance matrix  is given by Eq. (3. 2). The second term 

 is the non-random (deterministic) contribution to the total error vector due to the 

deterministic error on the fixed parameters . The expected value of  is: 

 (3. 30) 

meaning that no systematic bias is introduced by the random measurement errors.  

Remark: this explains that the mean  of the 100 scattered estimations in Figure 2 is 

very close to the exact value . 

The covariance matrix of  is given by: 

 (3.31) 

The matrix 
1

t

r r r

−
 =  P S S  may thus be seen as the matrix of “amplification” of measurement 

errors. The expected value of  is:  

1

2E 0t t

r r c c r r r c c

−   = − = − ≠   e A S e S S S S e (3.37)   

This expected value is different from zero, which means that estimation  is biased, if 

the error ec of the parameters supposed to be known is different from zero itself. This means 
that in the preceding stochastic simulation if only one part of had been estimated (with a 

non-zero error on the remaining part ) the scatter of 100 estimations would not have been 

centred on . This bias is computed using the corresponding sensitivity coefficients matrix 

. The covariance matrix ((n-r)×(n-r)) of  error is  because  is not 

a random error. Finally, the total bias associated to the estimation  is due to the 

biased value of  and its value is given by: 
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The matrix 
1

t t t

r r r c r r c

−
  = S S S S P S S  (r × (n-r)) may thus be seen as the “amplification” of bias on 

the fixed parameters . For a fixed value of , the covariance matrix  of estimation error is: 

 (3. 32) 

The coefficients of the covariance matrix of the estimation error are defined by: 

 (3. 33) 

  

Its main diagonal elements is composed of the individual variances of the error associated to 

each component of the estimated vector  and its other coefficients are the covariance 

of crossed errors. Eq. (3.31) shows that knowledge of the variance of measurement errors  

is needed in order to compute the covariance matrix. If  is not measured before the 

experiment, an estimation of it may be obtained at the end of estimation thanks to the final 

value of the objective function . In fact, this estimation is 

based on the fact that, at the end of the estimation, the only difference that subsists between 
measurements and model (if its structure and its parameters are correct) must be the 
measurement errors. In fact, exact parameters are not exactly obtained, and the remaining 
differences between measurements and model are the residuals given by (3. 12). If the 
estimated parameters are not too far from the exact parameters, the residuals should have 
some statistical properties close to those of measurement errors. That is why a non-biased 

estimation of  for the estimation of r parameters from the use of m measurements is thus 

given by: 

 (3. 34) 

 
This estimation is only valid for an independent and identically distributed (i.i.d.) noise and if 

there is no bias in the parameters supposed to be known, that is . Let us note that 

in the case of ‘exact matching’, where the number of measurements m is equal to the number 
r of parameters that are looked for, both numerator and denominator of equation (3.41) are 
equal to zero and, consequently, no information about the noise level can be brought by the 
calculation of the residuals. 
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2.5.3. The correlation matrix  
 

The estimation error associated to  cannot be arbitrarily low independently of the 

corresponding error in ( )r ,OLS
ˆ jx   in the case where  cov ( , )r i r je e : r ix̂   and r jx̂  are said 

correlated through the link that exists between their errors. The correlation level between 

estimations  r ix̂  and r jx̂  is thus measured by the quantity: 

   for  i, j = 1,…, r (3. 35) 

that lies between -1 and 1.  

One considers that two estimation errors are highly correlated when  (Beck et al., 

1977). This quantity is independent of the magnitude of measurement errors and corresponds 
only to the degree of collinearity of the sensitivity coefficients. In the example of Figure 3, 

 indicates that the error in the estimation of the slope ( ) is highly linked to the 

error in the estimation of the intercept : they will have the same sign (both estimations will 

be either under- or over-valued with a very high level of probability). However, this correlation 
coefficient does not bring any information about the level of these errors: this is brought by the 
calculation of their variances, the diagonal coefficients in Eq. (3.36). The high negative 
coefficient of correlation between the two parameters in our example explains why the scatter 
of the 100 estimations is contained inside a 'narrow'  and 'inclined' ellipse whose main axis has 
a negative slope in Figure 3. 

 

2.5.4. The confidence region and interval for OLS with Gaussian assumptions  

If the noise is Gaussian and i.i.d. the confidence region in the plane  plane in Figure 

2, for a given confidence level  is an ellipse (for n=2 parameters, see Figure 4). Its equation 

in coordinates centered on  is: 

 

 (3. 36) 

 is computed by the function chi2inv(1-alpha,2) in MATLAB® (or GNU-Octave) or 

LOI.KHIDEUX.INVERSE(1-alpha;2) in Excel® if we search for the confidence region at a 95% 

level (α=0.05) for the estimation of 2 parameters.  

Typical values for classical confidence intervals are indicated in the Table 3 
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1-α ν=1 ν=2 ν=3 ν=4 

68.30% 1.00 2.30 3.53 4.72 

95.45% 4.00 6.17 8.02 9.72 

99.73% 9.00 11.83 14.16 16.25 

Table 3 : Chi-Square law for given confidence levels (1 - α) and ν degrees of freedom that will 
be used to compute the size of the ellipsoidal confidence regions. Square root of values in first 

column gives the classical rules ‘1σ, 2σ and 3σ’ 

 

 is the variance of noisy measurements. It is worth noting that the lengths of half axes  

and  in the principal directions of the ellipse are given by: 

 (3. 37) 

 and  are the eigenvalues of . The product of these two eigenvalues is equal to the 

determinant of . Finally, the area of the confidence region inside the ellipse is given by:  

 

 (3. 38) 

 

Figure 4 : elliptical confidence region associated to the estimation of two parameters (with 

Gaussian i.i.d. measurement noise), at a confidence level 1-α=0.95. 
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So, the product of eigenvalues of  gives information on the area of the confidence region, 

while the individual eigenvalues give information on the lengths of each principal direction of 
the ellipse : a 'long' ellipse in a direction corresponds to a low eigenvalue. The experiment that 

will maximize ( ) 1 2det t λ λ=S S  in order to minimize the confidence region is called a ‘D-

optimal’ experiment. 

In the case of estimation of r = n parameters, the n variances associated to each component 
of the estimated vector constitute the main diagonal of matrix C (Eq. 3.39). The square 

root of the ith diagonal component of  is then the standard deviation associated to the 

estimation  and can be expressed in %. Then, the half width of confidence interval 

, at a level of confidence of , associated to the estimation  is now given by: 

 

, for i = 1,…,n (3. 39) 

 

The quantity is the t-statistic for m - n degrees of freedom at the confidence level 

of  (function tinv(1-alpha/2,m-n) in MALTAB® or LOI.STUDENT.INVERSE.N(1 – 

alpha/2;m - n) in Excel®). For example, for m = 20 measurements, if n = 2 parameters are 
estimated, and if the 95% confidence is wanted, then  and . For a 

high number of measurements (>200), the t-statistic tends to the Gaussian statistic and we 
have . Finally, the result of the estimation process of the unknown exact 

parameter can be presented in the following way:  

 
 
 

‘ has a 95% chance of being in the interval ’ 

or:  ‘  with 95% chance’ 

2.5.5. The residuals analysis 

When estimation is achieved, the graphical analysis of residuals given by Eq. (3.13)  

enables to detect some inconsistency of the result. Difference between measurements and 
model response with optimal parameters must ‘look like’ measurement noise , or in other words 
: ‘the right model with the right parameters must explain the measurements except its random 
part’. For a Gaussian noise with standard assumptions, the statistical properties of residuals 

must be close to the measurement error properties (zero mean and variance (m – n) ). If 

the residuals are signed, the problem may be due to an error in the statistical assumptions 
regarding the measurements or in the structure or parameters of the direct model. 
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Figure 5 : graphical analysis of residuals at the end of the estimation 

 

3. Indicators for a successful estimation 
 

It has been shown above that matrix , also called the information matrix, is fundamental 

in the process of parameter estimation: 
 

- it has to be invertible (that is non-singular:  ) in order for the OLS 

estimation to be possible, according to Eq. (3. 20), 
- it also has to be inverted to compute the covariance matrix according to Eq. (3.31) 

associated to the OLS estimation. The diagonal terms of this matrix are equal (within 

the factor and in case of an i.i.d. noise) to the variances of each estimation, and 

the off-diagonal terms enable to compute the correlation matrix. The inverse of  

play the role of "noise amplification", 

- the eigenvalues of , in the case of a Gaussian i.i.d. noise, enable the calculation 

of the lengths of the half principal axes of the elliptical confidence region, 
- the determinant of  enables the calculation of the area of the elliptical 

confidence region. 
 

The difficulty is clear :  has to be non-singular to be inverted and  has to be not 'quasi-

singular' in order to limit the noise amplification. This notion of non-singular character of the 

information matrix  makes sense only if all the parameters xj have the same physical 

units. Otherwise, one should study matrix where  is the reduced (sometimes called 

‘scaled’) sensitivity matrix, see section Sections 3.1 and 3.3.  
 
We then have to find some indicators to evaluate the singularity and the quasi-singularity of 

. The first indication can be simply graphical. Indeed, the singularity would happen if a 

sensitivity coefficient Si (t) was purely proportional to another Si (t); in that case the rank of  

is lower than n, and its determinant is zero. More difficult is to find a linear combination of more 
than two sensitivity coefficients for which the consequences would be the same. The quasi-
singularity would happen if the sensitivity coefficients are linked for all values of the 
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independent variable (time here). This case happens most of the time, the rank of  is not 

zero but its determinant is low and its condition number built with the ratio of extreme 
eigenvalues: 

 (3. 40) 

 
takes high values.  
 
Another explanation stems from linear algebra arguments: one can consider that each 

sensitivity coefficient , that  forms a (m × 1) matrix,  a so-called  ‘column-vector’, is the 

components of a real vector  in a m-dimensional space: the possible quasi-singularity of 

matrix is caused by the fact that the vectors of the corresponding system of real vectors are 

‘nearly’ dependent, which means that a non-zero set of n coefficients exists that makes the 
corresponding linear combination of these real vectors ‘nearly’ equal to zero (the interested 
reader can refer to lecture L7 of this series). Of course, the term ‘nearly’ needs to be quantified, 
that is that either all the sensitivity coefficients must have the same physical units or this 
analysis must be made using reduced sensitivity coefficients otherwise (see section 3.1 further 
down). Let us note that   
 
‘Visual’ and ‘quantitative’ criteria will now be illustrated. We introduce first the reduced 

sensitivity matrix , that enables to compare the sensitivity coefficients between themselves 

and to compute a covariance matrix associated to relative estimations (and then to compute 
directly relative standard deviation associated to each parameter). 

3.1. The reduced, or scaled, sensitivity matrix  

It is given by: 

 

with  

(3. 41) 

 
 

(3. 42) 

It is built with the reduce, or scaled, sensitivity coefficients that are defined as: 

 

 
(3. 50) 

Eq. (3.50) shows that the reduced sensitivity  represents the absolute variation of model 

 due to a relative variation of parameter . They can be also considered as 

the sensitivity coefficients with respect to the natural logarithm of each parameter.  These 
reduced sensitivity coefficients have then the same unit as both model output  and 
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standard deviation  of the measurement noise. If their magnitude is lower than the 

magnitude of the measurement noise , it means that the influence of the considered 

parameter on the model response will not be measurable with a correct accuracy. 
Consequently, the estimation of this parameter through the use of experimental 
measurements, if it is possible, will be highly inaccurate. Rapid information may then be given 
by comparing the magnitude of each reduced sensitivity coefficient to the magnitude of the 
measurement noise, with respect to the independent variable (here time). 

In the preceding example, we have then (with n = 2 parameters):  

 

 (3. 51) 

Let us notice that all the coefficients defining x have to be chosen in order to calculate (and 
compare) the reduced sensitivity coefficients: contrary to the sensitivity coefficients of a linear 
model, they do depend on the value of the parameter vector x. That is why a ‘nominal’ value 
for this vector is used for this calculation, that is a value that is a priori expected to be close to 
its exact value in a parameter estimation problem. 

3.1.1. Graphical analysis of reduced sensitivity coefficients 

As said before, when nominal values of the parameters have been chosen, it could be very 

instructive to plot all the reduced sensitivity coefficients composing each column of in the 

same graph in order to ‘visually’ detect some future ill-conditioning of matrices and  

due to several factors: 

- One or more columns of have low values (in absolute value) with respect to both 

the other ones and to the noise level , indicating poor sensitivities of the model to 

some parameters. 

- Two or more column are linearly dependent, indicating correlations between some 
parameters that will prevent their simultaneous identification. The simplest 
dependence to check is the proportionality between two coefficients (see Figure 6 
and Figure 7 for favorable and unfavorable situations). Let us note that this linear 
dependence has to concern the whole time interval [tmin, tmax] in order to imply an ill-
conditioning of the inversion. 
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Figure 6 : some situations 
where reduced sensitivity 
coefficients S*

k and S*
j are 

linearly independent 

 

Figure 7 : some situations 
where reduced sensitivity 
coefficients S*

k and S*
j 

(and sometimes S*
p) are 

linearly dependent, 
implying an ill- 
conditioning of the 

information matrix 

making it difficult, or 
impossible, to inverse it. 
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3.1.2. The relative covariance matrix, and relative confidence intervals 

The relative variance-covariance matrix (size n × n for estimation of n parameters) is built the 
same way as the absolute variance-covariance matrix (see Eq. (3.36) and (3.39)) but the 
amplification matrix (inverse of the information matrix) is now built with the reduced sensitivity 
matrix S* instead of S: 

=  

cov ( )cov ( )
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 (3. 43) 

Then, the C* matrix contains on its main diagonal the n relative variances associated to each 

component of the estimated vector . The square root of the ith diagonal component of  

is then the relative standard deviation (dimensionless) associated to the estimation  and 

can be expressed in %. 

, for  i = 1,…,n (3. 52) 

Last, the half width of relative confidence interval , at a level of confidence of 

, associated to the estimation  (and that was evaluated with 100 stochastic 

simulations in Section 3.5.1.) is now given by: 

 

, for i =1,…,n (3. 53) 

 

Finally, the result of the estimation process of the unknown exact parameter can be 

presented as the following, with the relative confidence interval:  
 

‘ has 95% chance of being in the interval ’ 

or :  ‘  with 95% chance’ 

 

The elliptical relative confidence region corresponding to the scattering of estimations of 

Figure 3 can also be computed with the relative information matrix , the resulting 

equation expressed in the reduced coordinates is: 

 (3. 44) 
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‘Absolute’ and ‘relative’ ellipses are plotted respectively in Figure 9 and Figure 9 to show 
that they correctly predict the extent of the 100 estimations cloud. 

  

Figure 8 : 100 estimations cloud and 95% 
absolute confidence elliptical region around 

the cloud mean 

Figure 9 : 100 estimations cloud and 95% 
relative confidence elliptical region 

 

3.2. Illustration, with a simple example, of different situations that modify the quality of 
estimation  

In this section, the influence of some experimental parameters on the quality of estimation are 
illustrated for the example described in Table 2. This quality is visualized by the extent of the 
confidence region and some of the quantitative indicators presented above are also observed. 

3.2.1. Influence of noise standard deviation  

The extension of the confidence region with respect to the standard deviation of noise 

measurement , without changing its orientation, is shown in Figure 10. This is conform to 

Eq. (3.45) giving the ellipse area proportional to the square of . 

3.2.2. Influence of number of measurements m (in the same time range) 

The extension of the 95 % confidence region with respect to the number of measurements m, 
without changing its orientation, is shown in Figure 11. This is conform to Eq. (3.45) giving the 

ellipse area inversely proportional to the square root  of , then area is inversely 

proportional to m. Then halving the noise level is better than doubling the number of 
measurements. This is quite obvious if one uses Eq. (3.36) and (3.39) to calculate the standard 
deviations and the correlation coefficient of the two OLS estimates  and : 
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where:      (3.55b) 

One clearly sees that the standard deviation of each parameter is proportional to the standard 
deviation of the noise and inversely proportional to the square root of the number of 
measurements, if the average and the standard deviation (3.55b) of the times of measurement 
are not changed when their number is changed. 

 

Figure 10 : Confidence ellipse extent as a 
function of noise level : in green (reference 

case) . 

Figure 11 : Confidence ellipse extent as a 
function of the number of measurements m : 

in green (reference case) m=20. 

3.2.3. Influence of time range (for m=20 measurements) 

The last tested experimental factor to be varied is the time range, with a constant number of 
measurements (m=20), see Figure 12. The results are presented in Figure 13 and in Table 
4. 
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Figure 12: three time ranges are tested, 
giving three clouds of estimations on 

Figure 13.  

Figure 13: three clouds of estimations 
(corresponding to the three time ranges for 

the experiments) and relative 95% 
confidence ellipse. 

Figure 13 shows that when experiments are done at ‘high’ time values, the confidence ellipse 
is growing, especially along the x2 axis: the estimation of x2 (intercept of the model x1 t + x2) 
is more and more inaccurate when the measurements are realized at high time values (far 
from t = 0). This is confirmed by the reduced sensitivity plots on Figure 14 and Figure 15 
(see comments in legends). 

 

Table 4 : results of estimations for three different time ranges, with m=20 measurements. 
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Figure 14 : first time range (between 0.5h 
and 2.5h). Reduced sensitivities are of 

same order of magnitude, sensitivity to x1 
is better than to x2 and is increasing with 

time. 

Figure 15 : third time range (between 15h 
and 17.5h). Reduced sensitivity to x1 is far 
better than sensitivity to x2 that appears 
now very close to zero comparing to S*

1. 

 

 

Last, Table 5 shows multiple indicators confirming that increasing the beginning of the time 
range for the estimation of x1 and x2 is degrading the conditioning and then the quality of 
estimation. 

 

Table 5 : indicators values for the three experiments. In the first column, the arrows indicate if 
the indicator should be high (arrow up) or low (arrow down) to improve the conditioning. 
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3.3. Singular Value Decomposition of a matrix and condition number 
 

3.3.1 Singular Value Decomposition (SVD) of a rectangular matrix 
 

Any rectangular matrix (called K here) with real coefficients and dimension (m, n) with m ≥ n, 
can be written under the form: 
 

,  that is   (3.56) 

 

 
Eq. (3.56) is sometimes called "lean" singular decomposition or "economical" SVD and 
involves: 
 
- U , an orthogonal matrix of dimensions (m, n) : its column vectors (the left singular vectors of 

K) have a unit norm and are orthogonal by pairs : , where  is the identity matrix of 

dimension n. Its columns are composed of the first n eigenvectors Uk, ordered according to 

decreasing values of the eigenvalues of matrix . Let us note that, in the general case, 

, 

 

- V , a square orthogonal matrix of dimensions (n, n), : . Its column vectors 

(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 

eigenvalues, of matrix , 
 
- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 

values of matrix , ordered according to decreasing values : . The 

singular values of matrix  are defined as the square roots of the eigenvalues of matrix 
. If matrix  is square and positive-definite, eigenvalues and singular values of K are the 
same. 
 

Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now square 
(size m x m) and the matrix replacing W is now diagonal but non square (size m x n). In the 
case m ≥ n , this can be written: 
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 (3.57b) 

 

Matrix is composed of the (m - n) left singular column vectors not present in  U. So, the 

concanated matrix verifies now: 

 

     (3.58) 

 
This singular value decomposition (3.55b) can be implemented for any matrix ,  with real 
value coefficients, for .  

 

3.3.2 Interest of the Singular Value Decomposition in linear parameter estimation 
 
We have seen above that if all the n parameters in a parameter vector x are sought for a linear 

model , where m noised measurements  are available, and if 

noised  is i.i.d., that is , its OLS estimator can be written: 

 

 (3.59) 

 

The potential difficulty in its estimation may stem from the possible ill-conditioning of the square 

information matrix  whose inversion makes the standard deviations of its different 

parameters become very large with respect to their exact value, see Eq. (3.51). So, a 

normalized criterion can be built in order to assess the quality of the estimation of the n 
parameters. 
  
This can be made through normalization of all the parameters xj present in parameter vector x 
by a a nominal value xnom, j  (which, in parameter estimation results from a prior knowledge of 
the order of magnitude of the corresponding parameter) to get a reduced parameter vector 

 without any physical unit:  
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So the output of the linear model can be expressed in terms of the reduced sensitivity matrix 

S* already presented in Section 3.1 and of the reduced (or scaled) parameter vector : 
 

  (3.61) 

 
OLS estimation of this reduced parameter vector becomes, using Eq. (3.23): 
 

 (3.62) 

 

And its covariance can be easily derived: 
 

     (3.63) 

 

It is the same equation as Eq. (3.51). Since all the components of the reduced sensitivity matrix 

have the same unit as signal y, and because  is dimensionless, it is possible to consider 

 as a linear application from a vector space of dimension n into a vector space of dimension 

m. That was not possible for the original parameter column-vector x, which did not belong to 
a true mathematical vector space, because its coefficients had not the same units. 
 

So, it is now possible to write the lean SVD of , which uses the notion of Euclidian norm of 

different true vectors, see Eq. (3.56): 
 

      (3.64) 

 
One can also calculate the amplification coefficient of the relative error kr, see Eq. (1.7) in  
Lecture 1 of the same series: 
 

  (3.65) 

 
Using the properties of matrices U and V described above, as well as Eq. (3.62), one can 
show: 
 
 

   (3.66) 

 
One can recognize in the right-hand term of the last inequality (3.66) the product of norms of 
two matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix S* 
while the first one is just the pseudo inverse of S*, which is noted S*+ here. 
 

Let us remind that the norm of any matrix K (which has not to be square) is defined by: 
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    (3.67) 

 

where  is the largest singular value of K. This  singular value is simply the square root 

of the largest (positive) value of the reduced information matrix , see Eq. (3.46). One 

can show that: 
 

   (3.68) 

 

So, it can be shown, using Eq. (3.65), (3.66) and (3.68) that the maximum value of the 
amplification coefficient of the relative error kr, that is the criterion that assesses the ill-posed 
character of the OLS parameter estimation problem is equal to the condition number, noted      
cond (.)  here, of the reduced sensitivity matrix: 
 

     (3.69) 

 

So, this condition number, defined here with the Euclidian L2 norm, is the pertinent criterion 
that can be used to measure the degree of ill-posedness of a linear parameter estimation 
problem, whatever the value of the noise level (for an i.i.d. noise). Since it requires the 
construction of the reduced sensitivity matrix, it depends on the nominal values of the 
parameters and can change strongly, depending on this choice, even if the problem is linear. 
 
  

( ) )(Max
1

2
1

2
KzKKz

z
K wtt =

=
=

)(1 Kw

)(1
*t* SSλ

)(

1
)(and)( 11 *

n

****

w
ww

S
SSSS === ++

)(

)(
)(cond)( 1

*
n

*
*

r
w

w
k

S

S
Sε =≤



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 

 Lecture 3: Basics for parameter estimation – page 31 / 35 

4. Illustration on a three parameters case 
 
Here are the characteristics of the new model and the experimental parameters: 
 

1 1 nomx [ x ]  10 

2 2 nomx [ x ]  2 

3 3 nomx [ x ]  3 

Model structure  
1 2 3x t x erfc( t ) x / t+ +

Number of measurements m 100 

Start of time range tmin 0.02 

Time step dt 0.02 

Noise standard deviation  0.5 

 

Figure 16 : Three parameters example, measurements and reduced sensitivities (at nominal 
values of parameters). 

Figure 17 and Figure 18 shows the 100 Monte Carlo estimations of the three parameters, 

perfectly centred on the exact values. The condition number of * t *S S here is 1325. 

),( xtymo
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Figure 17 : Unbiaised estimation of the three parameters: the clouds are centered on the exact 
value (the black square). Axes are scaled with the parameters units 

 

 

 

Figure 18 : Unbiaised estimation of the three parameters. Ellipses are the relative confidence 
region (at level 95%) of each parameter, in axes graduated in % of the nominal values. In the 

second line, axes are equally graduated between -50% and 50% to visually compare the relative 
variance associated to each estimated parameter (dispersion of points projected on each axe) 

and the correlation between errors (inclination of ellipses). 
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If x1 is fixed to a wrong value (11 instead of 10, bias equal to +10%), then estimation of x2 and 
x3 is biased, see Figure 19 (blue right plot). In that case, error due to fixed parameter (bias) is 
even higher than error due to noise measurement (variance). The condition number is better 
(227) for the simultaneous estimation of only 2 parameters (x2 and x3) but care has to be taken 
on the fixed value of x1: this illustrates the ‘bias-variance trade-off’. 

 

Figure 19: One parameter is blocked to a wrong (‘biased’) value, the two other are estimated 
(Monte Carlo run with 100 experiments). In black : no bias, same figure than Figure 17. In red 
(center plot), the parameter x2 is blocked to a biased value (bias of +10%) and x1 and x3 are 

estimated and plotted in the x3 vs x1 plot. In blue (right plot), the parameter x1 is blocked to a 
biased value (bias of +10%) and x2 and x3 are estimated and plotted in the x3 vs x2 plot. Exact 

values of (x1, x2, x3) are (10, 2, 3). Centers of black, red and blue clouds are respectively (10.06, 
1.998, 3.0003), (10.02, (2.2), 2.95) and ((11), 4.1, 2,1) where values between (.) are blocked 

values. 

If x2 is fixed to a wrong value (2.2 instead of 2, bias equal to +10%), then estimation of x1 and 
x3 is biased, see Figure 19 (red center plot). But in that case, error due to fixed parameter 
(bias) is smaller than error due to noise measurement (variance). The condition number is 
small (equal to 9) for the simultaneous estimation of x1 and x3 and the amplification of bias (on 
x2), given by Eq. (3.38) is here acceptable. 

These behaviors can be related to the reduced sensitivities of Figure 16: the model is less 
sensitive to x2 than x1 during the chosen time range, then a bias on x2 is less amplified than a 

bias on x1. Last, according  to Eq. (3.38), because of the inner product between t

r
S  and 

c
S that 

amplifies the bias on fixed parameters 
c

e , one has interest to block parameters whose 
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sensitivity coefficient 
c

S is the most ‘orthogonal’ possible to the sensitivity coefficient of 

estimated parameters t

r
S , or in other words, the least ‘collinear’, or the least ‘similar’. 

 

5. Conclusion 
 
The example of a linear model with respect to its two parameters is rich enough to introduce 
many tools useful in the field of parameter estimation : the sensitivity coefficients that compose 
the sensitivity matrix are one of these tools. This matrix has to be inverted (or the 
corresponding linear system of normal equations has to be solved) in the estimation problem. 
The variance-covariance matrix (sometimes called more simply the covariance matrix) that 
helps to qualify the quality of the estimation (variance of each estimation, correlation between 
them, size of the confidence region if the stochastic law of the measurement noise is known), 
uses also these coefficients. In the non linear case, the problem is often solved by assuming 
a local linear behaviour of the objective function to be minimized (see lecture L7 of this series). 
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