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Abstract. The solution of an inverse problem within the Bayesian framework is obtained by 
statistical inference on the posterior probability density. Such a density is obtained through 
Bayes' theorem and is proportional to the product of the likelihood function, which models the 
measurement errors, by the prior distribution, which models the information known about the 
parameters before the experimental data is available. The focus of this lecture is on Markov 
Chain Monte Carlo (MCMC) methods. Basic concepts, as well as practical issues regarding 
the implementation of MCMC methods, are presented. The Metropolis-Hastings algorithm, as 
well as its alternative version that samples the parameters by blocks, are described in detail. 
Monte Carlo methods usually involve large computational times. The Approximation Error 
Model technique and the Delayed Acceptance Metropolis-Hastings algorithm are thus 
presented, aiming at computational speed up and at making MCMC suitable for inverse 
problems of practical interest.    
 
 
1. Introduction 
 
The term Bayesian is commonly used to refer to techniques for the solution of inverse problems 
that fall within the framework of statistics developed by the Presbyterian minister Rev. Thomas 

Bayes ( 1702 - † 1761) [1]. Such framework was actually established after Bayes' death, 

when his friend, Richard Price, published Bayes' famous paper, which dealt with the following 
problem: "Given the number of times in which an unknown event has happened and failed: 
Required the chance that the probability of its happening in a single trial lies somewhere 
between two degrees of probability that can be named."[2]. On the other hand, it is attributed 
to Laplace the mathematical formulation that is known today as Bayes' theorem [3]. The term 
Bayesian was first used by R. A. Fisher, but in a pejorative context. Although born more than 
120 years after the death of Bayes, Fisher was Bayes biggest intellectual rival [3]. The major 
issue by Fisher against Bayes and Laplace was that they used the concept of a prior 
probability, which represents the information about an unknown quantity before the measured 
data is available [3]. Fisher's theory relies solely on the measured data and on modelling of 
their associated uncertainty, aiming at unbiased inference and/or decision; therefore, it is 
usually referred to as the frequentist framework for statistics [1,3,4]. On the other hand, within 
the Bayesian framework, credit is also given to previous beliefs, in addition to that given to the 
measured data. Such previous information can even be qualitative but needs to be represented 
in terms of a probability distribution function, and regretfully induces bias in the results [1,3,4]. 
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Nevertheless, the use of prior information in the Bayesian framework does not mean that it 
completely overtakes the information provided by the measured data, unless the last one is 
too uncertain to be really taken into account. Interestingly, one may also argue that life is 
Bayesian: think about life as a sequential process and notice that, at any day, our past beliefs 
are combined with new measured data, in order to provide at the end of the day a better 
understanding about different things of our interest, like physical/chemical phenomena, 
industrial processes, persons, or even the faster way to go to work. 
 
Although not always considered in such a way, the solution of inverse problems can be 
appropriately formulated in terms of statistical inference [5]. Statistical inference refers to the 
process of drawing conclusions or making predictions based on limited information, beyond 
the immediate data that is available [4]. Note that this is exactly what is aimed with the solution 
of inverse problems, which can be broadly defined as those dealing with the estimation of 
unknown quantities appearing in the mathematical formulation of any kind of process, by using 
measurements of some dependent variable of the problem (observable response of the 
system) [5-27]. There are many techniques for the solution of inverse problems, but the most 
general ones are usually related to the minimization of an objective function that involves the 
difference between measured and estimated responses of the problem [5-27]. If the objective 
function is derived based on statistical hypotheses for the measurement errors and unknown 
parameters/functions, the minimization procedure can be related to statistical inference, thus 
resulting in point estimates for the unknowns that allow for estimations of their associated 
uncertainties [5,8]. Unfortunately, such is generally not the case, in special when the objective 
function is penalized with regularization terms.  
 
The solution of inverse problems within the Bayesian framework is recast in the form of 
statistical inference from the so-called posterior probability density, which is the model for the 
conditional probability distribution of the unknown parameters given the measurements. The 
measurement model incorporating the related uncertainties is called the likelihood, that is, the 
conditional probability of the measurements given the unknown parameters. The model for the 
unknowns that reflects all the uncertainty of the parameters without the information conveyed 
by the measurements, is called the prior model [5,8,20,22,25-29]. The prior information can be 
combined with the likelihood to form the posterior distribution by using Bayes' theorem 
[5,8,20,22,25-29].  
 
The objective of this text is to introduce some basic concepts regarding the solution of inverse 
heat transfer problems within the Bayesian framework. Special emphasis is given to the use 
of Markov Chain Monte Carlo (MCMC) methods [1,4,5,20,22,25-29]. Monte Carlo methods are 
also designated as Stochastic Simulation techniques, since values simulated (sampled) from 
the distribution of interest, which in general is not completely known, are used for the 
computation of its statistics [28]. Simulation techniques rely on probability results, such as the 
law of large numbers and the central limit theorem, which ensures that the approximate 
statistics tend to the actual ones as the number of simulated values increase [28].    
 
This text is not aimed at a literature review about the subject, which would certainly include a 
very large number of works ranging from statistical, mathematical and computational aspects, 
to practical engineering applications. Indeed, an analysis of recent conferences on inverse 
problems clearly shows a trend of increasing number of papers that make use of solution 
techniques within the Bayesian framework, as faster computers become available. This text 
also does not cover Bayesian filters for the solution of state estimation problems.  
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The most complete source for the solution of inverse problems within the Bayesian framework 
is the book by Kaipio and Somersalo [5]. The reader is referred to the book by Gamerman and 
Lopes [28] and to the book edited by Brooks et al. [29] for deeper details about Markov Chain 
Monte Carlo methods. Fundamental material on Bayesian statistics can be found in the books 
by Lee [1] and Winkler [4]. A very didactical series of videos presenting the Monte Carlo Markov 
Chain methods can be found at https://www.youtube.com/watch?v=12eZWG0Z5gY.  Two 
interesting books, with historical aspects and practical applications of Bayesian statistics in 
layman’s terms, include references [3] and [30]. 
 
                                 
2. General Considerations 
 
Consider the mathematical formulation of a heat transfer problem, which, for instance, can be 
linear or non-linear, one or multi-dimensional, involve a single or coupled heat transfer modes, 
etc.  We denote the vector of parameters appearing in such formulation as 

 

[ ]1 2, ,...,T

NP P P=P     (1) 

 

where N is the number of parameters. These parameters can possibly be thermal conductivity 
components, heat transfer coefficients, heat sources, boundary heat fluxes, etc. They can 
represent constant values of such quantities, or the parameters of the representation of a 
function in terms of known basis functions. For example, we can consider a heat source term 

gp(t) as a function of time, parameterized as follows: 
 

1

( ) ( )
N

p j j

j

g t P C t
=

=     (2.a) 

 

where ( )jC t , j = 1, …, N, are linearly independent basis functions that generate the space of 

the projected gp(t). Note that ( )jC t  can also be functions with local support, such as  

 

11 ,
( )

0 ,

j j

j

for t t t
C t

elsewhere

+< <
= 


       (2.b) 

 

where the parameter 
jP  then represents the local value of the function in the time interval 

1j jt t t +< < , that is, ( )p j jg t P= , as illustrated by figure 1. 
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Figure 1. Parameters representing local values of a function that varies in time 

 
Consider also that transient measurements are available within the medium, or at its surface, 
where the heat transfer processes are being mathematically formulated. The vector containing 
the measurements is written as:  
 

 ( )1 2, , ... ,T

IY Y Y=Y
� � �

    
(3.a) 

where iY
�

contains the data of M sensors at time ti, i = 1, …, I, that is,  

 

 
( )1 2, , ... ,i i i iMY Y Y Y=

�
 for i=1, …, I   (3.b) 

 

Therefore, we have D =MI measurements in total. Note that, in practice, the measured data 
are not limited to temperatures, but could also include heat fluxes, radiation intensities, etc.  
 
Throughout this tutorial, the measurement errors are assumed to be additive, that is, 
 

 ( )= +Y Τ P ε      (4) 

 

where T(P) is the solution of the mathematical formulation of the physical problem, obtained 

with the vector of parameters P, that is, 
 

1 2( ) [ ( ) , ( ) , , ( ) ]T

IT T T=T P P P P
� � �

⋯
   

(5.a) 

Where: 
 

1 2( ) [ ( ) , ( ) , , ( )]i i i iMT T T T=P P P P
�

⋯
    

for i=1, …, I     (5.b)  

 
The mathematical formulation is supposed to perfectly represent the physical problem of 

interest. Similarly, the solution T(P) is supposed to be extremely accurate from the 
computational point of view. Anyhow, modelling errors can be appropriately taken into account 
within the Bayesian framework, as it will be apparent later in this text [5].  
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By further assuming that the measurement errors, ε, are Gaussian random variables, with zero 

means, known covariance matrix W and independent of the parameters P, their probability 

density function, ( )π ε , is given by [5,8,20,22,25-29]: 

 

1/2/2 11
( ) (2π) exp

2
D Tπ −− − = − 

 
ε W ε W ε    (6.a) 

 

where π = 4 tan-1(1). Due to the additive model for the measurement errors given by equation 
(4), equation (6.a) can be rewritten as  
 

1/2/2 11
( ) ( ) (2π) exp [ ( )] [ ( )]

2
D Tπ π −− − = = − − − 

 
ε Y P W Y T P W Y T P  (6.b) 

 
which is the likelihood function for the above hypotheses regarding the measurement errors. 
The likelihood function gives the conditional probability density of different measurement 

outcomes Y with a fixed P, which is denoted by ( )π Y P  [5,8,20,22,25-29].  

 
A very common approach for the solution of inverse problems, dealing with the estimation of 

the parameters P by using the measurements Y, is to maximize the likelihood function. This 
can be accomplished through the minimization of the term inside the exponential function of 
equation (6.b), resulting in the following maximum likelihood (ML) objective function: 
 

[ ] [ ]1( ) ( ) ( )T

MLS
−= − −P Y T P W Y T P

  
 (7) 

 
The least squares norm can be obtained as a particular case of Eq. (7), if the measurements 

are uncorrelated and with constant variances σ 2 [8]. In this case, the covariance matrix W is 
given by: 
 

2σ=W I      (8) 

 

where I is the identity matrix. Then, the minimization of Eq. (7) is equivalent to the minimization 
of the least squares norm: 
 

[ ] [ ]( ) ( ) ( )T

OLSS = − −P Y T P Y T P     (9) 

 

The covariance matrix of the values estimated for the parameters P with the minimization of 
equation (7), is given by [8]: 
 

1 1cov( ) ( )T − −=P J W J     (10.a) 

  
which reduces to 
 

1 2cov( ) ( )T σ−=P J J     (10.b) 
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if W is given by equation (8). Equations (10.a, b) are exact for linear estimation problems, but 
can be used as approximations for nonlinear problems [8]. 
 
Therefore, in order to make use of the minimization of the least squares norm for obtaining 

point estimates for the parameters P that have some statistical meaning (for example, that 
allow estimates of the covariances of the estimated parameters with equation 10.b), all the 
statistical hypotheses stated above need to be valid [8]. Such a fact is quite often overlooked 
when an objective function is defined for the solution of an inverse problem via optimization 
techniques. Still, if the estimation problem is linear, the measurement errors are additive, with 
zero mean, and with a covariance matrix that is positive definite and known to within a 

multiplicative constant 
2σ , that is,  

 
2ˆ σ=W W
    

 (11) 

 
the Gauss-Markov theorem [8,18] states that minimum variance estimates can be obtained 
with the minimization of  
 

[ ] [ ]1ˆ( ) ( ) ( )T

GMS
−= − −P Y T P W Y T P

  
 (12) 

 

even if the measurement errors are not Gaussian. In such a case, if ˆ =W I , the minimization 

of the ordinary least squares norm provides minimum variance estimates. On the other hand, 

the covariance matrix of the values estimated for the parameters P cannot be computed with 

equations (10.a, b) since 
2σ is not known. 

 
Different methods can be used for the minimization of equations (7), (9) or (12), after an 
analysis of the sensitivity coefficients of the parameters and an appropriate experimental 
design [8-26]. For a linear case, the minimization of equation (7) is obtained with: 
 

1 1 1( )T T− − −=P J W J J W Y     (13.a) 

 
while, for the nonlinear case, the iterative procedure of Gauss' method gives:     
 

1 1 1 1( ) [ ( )]k k T T k+ − − −= + −P P J W J J W Y T P    (13.b) 

 

where the superscript k denotes the number of iterations and J is the sensitivity matrix.  
 
We note that other maximum a posteriori objective functions can be derived if the 
measurement errors follow density functions different from the Gaussian distribution examined 
above. 
 
 
3. Bayesian Framework  
 
For the solution of inverse problems within the Bayesian framework, all variables included in 
the mathematical formulation of the physical problem are modelled as random variables. 
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Techniques for the solution of inverse problems within the Bayesian framework can be 
summarized in the following steps [5]: 

1. Based on all information available for the parameters P before the measured data Y is 

taken, select a probability distribution function, π(P), that appropriately represents the 
prior information. 

2. Select the likelihood function, π(Y|P), that appropriately models the measurement errors 
and involves a relation between the observations and the mathematical model of the 
physical problem under picture (see, for example, equation 6.b).  

3. Develop methods to explore the posterior density function, which is the conditional 

probability distribution of the unknown parameters given the measurements, π(P|Y). 
  

The formal mechanism to combine the new information (measurements) with the previously 

available information (prior) is known as the Bayes’ theorem [5,8,20,22,25-29]. Let P and Y be 
continuous random variables. Then, we can write [4]: 
 

( , )
( )

( )

ππ
π

= P Y
P Y

Y
    (14) 

 

that is, the conditional density of the random variable P given a value of the random variable 

Y is the joint density of P and Y divided by the marginal density of Y, where 
 

( ) ( , )
N

R
dπ π= Y P Y P     (15) 

 

The joint density ( , )π P Y  is not generally known, but it can be written in terms of the likelihood 

and the prior as [4]: 
 

( , ) ( ) ( )π π π=P Y Y P P     (16) 

 
By substituting (16) into (14) we then obtain Bayes' theorem, which is given by: 

 

( ) ( )
( )

( )

π π
π

π
=

Y P P
P Y

Y   
 (17.a) 

 

where ( ) ( )posteriorπ π=P P Y  is the posterior probability density, π(P) is the prior density, π(Y|P) 

is the likelihood function and π(Y) is the marginal probability density of the measurements, 

which plays the role of a normalizing constant. Since the computation of π(Y) with equation 
(15) is in general difficult, and usually not needed for practical calculations as will be apparent 
below, Bayes' theorem is commonly written as: 
 

( ) ( ) ( ) ( )
posterior

π π π π= ∝P P Y Y P P
  

 (17.b) 

 
  



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 

 Lecture 9. Bayesian Framework for inverse problems – page 8 / 30 

 

4. Maximum a Posteriori Objective Function 
 

Consider a case with a Gaussian prior density model for the unknown parameters in the form: 
 

1/2/2 11
( ) (2π) exp ( ) ( )

2
N Tπ −− − = − − −  

P V P μ V P μ    (18) 

 

where µ and V are the known mean and covariance matrix for P, respectively. By assuming 

normally distributed measurement errors, with zero means and known covariance matrix W, 

additive and independent of the parameters P, the likelihood function is given by equation 
(6.b). By substituting equations (6.b) and (18) into Bayes’ theorem given by equation (17.b), 
we obtain: 
 

[ ] [ ]1
ln ( | ) ( ) ln 2π ln | | ln | | ( )

2
MAPD N Sπ ∝ − + + + +P Y W V P   (19) 

 
Where: 
 

[ ] [ ]1 1( ) ( ) ( ) ( ) ( )T T

MAPS
− −= − − + − −P Y T P W Y T P P V Pµ µ   (20) 

 
Equation (19) reveals that the maximization of the posterior distribution can be obtained with 
the minimization of the objective function given by equation (20), denoted as the maximum a 
posteriori (MAP) objective function for the statistical hypotheses made above [5,8,20,22,25-
29]. Equation (20) shows the contributions of the likelihood and of the prior distributions in this 
objective function, given by the first and second terms on the right-hand side, respectively. It 
is now interesting to notice that the maximum likelihood objective function (equation 7) is not 
a Bayesian estimator, since it does not contain information provided by the prior distribution 
for the parameters. Conspicuously, the least squares norm (equation 9) and other objective 
functions derived from equation (7), even those containing penalization terms (e.g., Tikhonov's 
regularization), are not Bayesian estimators, since they only explore the information provided 
by the measurements and, eventually, some characteristics of the parameters, like 
smoothness. Although the second term on the right-hand side of equation (20) is a quadratic 
form and resembles Tikhonov’s regularization, there is a fundamental difference between the 
two approaches. Tikhonov’s regularization focuses in obtaining a stabilized form of the original 
objective function and is not designed to yield error estimates that would have a statistical 
interpretation. In contrast, Bayesian inference assumes that the uncertainties in the likelihood 
and prior models reflect the actual uncertainties. Only if this condition is fulfilled, the 
uncertainties that are computed from equation (19) correspond to the actual posterior 
uncertainties [5].  
 
Such as for the maximum likelihood objective function, different methods can be used for the 
minimization of equation (20) in order to obtain point estimates for the unknowns. For nonlinear 
problems, the Gauss method results in the following iterative procedure [5,8,20,22,25-29]:  
 

1 1 1 1 1 1[ ] { [ ( )] ( )}k k T T k k+ − − − − −= + + − + −P P J W J V J W Y T P V Pµ   (21) 
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Note in equation (21) that with the MAP estimator, the conditioning of the matrix 
1T −J W J  is 

improved with the matrix 
1−V , which is the inverse of the covariance matrix of the Gaussian 

prior information for the parameters. Therefore, the estimation of the parameters can be 
stabilized by using prior information with small covariances. Despite such desired effect for the 
regularization of the estimation procedure, the MAP estimator is biased and the expected value 

of P is µ [8]. Such a fact clearly shows the important requirement of modeling the prior 
information as accurately as possible, for the success of the inverse analysis within the 
Bayesian framework. For a linear case, the covariance matrix of the posterior Gaussian 
distribution is given by [8]: 
 

1 1 1cov( ) ( )T − − −= +P J W J V     (22) 

  
which can be used as an approximation for nonlinear cases. 
 
 
5. Markov Chain Monte Carlo (MCMC) Methods 
 
The Gaussian likelihood and the Gaussian prior examined in section 4 resulted in an 
expression for the posterior (equation 19) from which a MAP point estimate can be obtained 
for the parameters, provided that the minimum of equation (20) exists. In this particular case 
(Gaussian likelihood and Gaussian prior), the prior is conjugate to the likelihood [1,4,5,28]. A 

class Π of prior distributions is said to form a conjugate family if the posterior density is in the 

class Π for all P, whenever the prior density is in Π [1]. Although this property is valid for many 
cases that involve continuous distributions, in special those that belong to the exponential 
family [1,28], the posterior probability distribution may not allow an analytical treatment if non-
conjugate prior probability densities are assumed for the parameters. Moreover, whereas the 
computation of the MAP estimate is an optimization problem, that is,  
 

arg max ( | )
NMAP

R

π
∈

=
P

P P Y      (23) 

 
other point and confidence estimate from the posterior distribution typically require numerical 
integration. For example, one common point estimate is the conditional mean defined as [5]: 
 

( ) ( | )
N

CM

R

E dπ= = P P P P Y P     (24) 

 

where E(.) denotes the expected value. In general, the dimension N of the parameter space is 
large enough to make the numerical integration in equation (24) impractical. Besides that, the 

computation of the normalizing constant in the denominator of ( | )π P Y  (see equations 14-17) 

already constitutes a challenging problem by itself.  
 
For those cases that the posterior is not analytical and/or numerical integrations required for 
estimates are not practical, Markov Chain Monte Carlo (MCMC) methods can provide a 
solution of the inverse problem, so that inference on the posterior probability becomes 
inference on its samples [1,4,5,20,22,25-28]. For example, the Monte Carlo integration of 
equation (24) can be approximated by [5]: 
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( )

1

1
( ) ( | )

N

n
t

CM

tR

E d
n

π
=

= = ≈ P P P P Y P P    (25) 

 

where 
( )tP  , for t = 1, …, n, are samples from ( | )π P Y . Markov Chain Monte Carlo methods 

are used to obtain such samples. 
  
Due to the simplicity in the application of MCMC methods, such a technique for the solution of 
inverse problems has been recently becoming quite popular, being applied even for cases 
where a MAP estimate could be feasible. One clear disadvantage on the application of Monte 
Carlo methods is the large computational time required. On the other hand, the use of 
computationally fast reduced models for the physical problem can be appropriately 
accommodated within the Bayesian framework [5], so that the application of MCMC methods 
to many practical problems is nowadays possible. 
 
Concepts and properties of Markov chains are presented in this section, which is then finished 
with a powerful, simple and popular MCMC algorithm. Some practical aspects and speedup 
techniques for the implementation of MCMC methods are delayed to other sections further 
below.      
 
 
Markov Chains 
 
The Markov chain is named after the Russian mathematician A. A. Markov, who developed 
such concept by investigating the alternance of vowels and consonants in a Russian poem. 
Poincaré also dealt with sequences of random variables that were in fact Markov chains [28]. 
A Markov chain is a stochastic process that, given the present state, past and future states are 

independent. The collection of the random quantities ( ){ : }t t T∈P  is said to be a stochastic 

process with state space S and index set T. The state space is a subset of RN, that is, the 

support of the parameter vector, while here T is the set of Natural numbers that index the states 
of the Markov chain [28].  
 
The stochastic process is a Markov chain if it satisfies the Markov condition [1,4,5,20,22,25-
29]: 
 

1 1 1 0 0 1( | , , , ) ( | )t t t t t tq q+ − − += = = = = = =P y P x P x P x P y P x…  for all 1 0, , , ,t S− ∈y x x x…  (26) 

 

where q is a transition probability. Some concepts regarding Markov chains are now presented. 
The reader shall consult references [1,4,5,20,22,25-29] for further details.  
 

If the transition probability does not depend on t, that is, if  
 

1 1( | ) ( | )t m t m t tq q+ + + += = = = =P y P x P y P x   for all m T∈    (27) 

 
the Markov chain is said to be homogenous [22]. 
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A distribution p* is said to be a stationary distribution of a chain if, once the chain is in p*, it 

stays in this distribution. Suppose now that ( ) *tp p→  as t → ∞  for any (0)p , where ( )tp  is the 

distribution at state t of the chain. Then, p* is the equilibrium distribution of the Markov chain 
and the chain is said to be ergodic.  
 

Consider the sequence of states 1 2 t
→ → → →x k k k y⋯  so that the transition probabilities 

1 2 1( | ) 0, ( | ) 0, , ( | ) 0
t

q q q≠ ≠ ≠k x k k y k… . Then, there is a sequence of states from x to y 

with a nonzero probability of occurring in the Markov chain. It is said that x and y communicate. 

If y and x also communicate through nonzero transition probabilities, it is said that these two 

states intercommunicate. If all states in S intercommunicate, then the state space is said to be 

irreducible under q. A Markov chain is reversible if ( ) ( | ) ( ) ( | )p q p q=x y x y x y .  

 

The period of a state x, denoted by dx, is the largest common divisor of the set 
( ){ 1: ( ) 0}mm p≥ >x,x . A state x is aperiodic if dx = 1. A chain is aperiodic if all of its states are 

aperiodic.  
 
 
Metropolis-Hastings Algorithm 
 
The most common MCMC algorithms are the Gibbs Sampler and the Metropolis-Hastings 
algorithm [1,4,5,20,22,25-29]. The Gibbs Sampler is not presented here for the sake of brevity.  
The Metropolis-Hastings algorithm was first devised by Metropolis et al. [31] in 1953, who 
aimed at the calculation of the properties of substances composed of interacting molecules. It 
was, therefore, a work focused on statistical mechanics, not in statistics itself. Although the 
paper has five co-authors [31], only the name of the first author became popular to designate 
the developed algorithm, which was lately generalized by Hastings in 1970 [32]. In fact, there 
are some controversies about who actually contributed on the work by Metropolis et al. [33]. 
 
The reason for the introduction of the above concepts about Markov chains is for the statement 

of following result regarding the Metropolis-Hastings algorithm [22]: Let p be a given probability 
distribution. The Markov chain simulated by the Metropolis-Hastings algorithm is reversible 

with respect to p. If it is also irreducible and aperiodic, then it defines an ergodic Markov chain 

with unique equilibrium distribution p.   
 
Unfortunately, it might not be possible to prove that the chain is irreducible and/or aperiodic for 
practical cases. In fact, parameters with linearly-dependent sensitivity coefficients generally 
result on periodic and correlated chains and an equilibrium distribution is not reached. Similarly 
to classical methods of parameter estimation, where the sensitivity coefficients directly 
influence the topology of the objective function based on the likelihood (see equation 7, for 
example) and a global minimum might not exist, such coefficients directly influence the 
posterior distribution, which is now sought via the implementation of a Markov chain. 
Therefore, the sensitivity coefficients need also to be carefully examined if the solution of the 
inverse parameter estimation problem is to be obtained within the Bayesian framework. In 
classical methods based on the maximum likelihood objective function, parameters with small 
and linearly dependent sensitivity coefficients are usually deterministically fixed, based on 
values known from previous experience and/or literature. In approaches within the Bayesian 
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framework, uncertainties on such kind of parameters can be appropriately taken into account 
through their prior distribution functions. The analysis of the sensitivity coefficients reveals that 
parameters with small and/or linearly dependent sensitivity coefficients require informative 
prior distributions for the success of the estimation procedure.   
 
The Metropolis-Hastings algorithm draws samples from a candidate density, such as in 
acceptance-rejection sampling [1]. The acceptance-rejection method is used to generate 

samples from a density ( ) ( ) /p p K=P Pɶ , where the normalizing constant K might be unknown, 

such as in the posterior distribution given by equations (17.a, b). Instead of sampling from 

( )p P , assume that there exists a candidate density ( )h P  that is easy to simulate samples 

from, where ( ) ( )p c h≤P Pɶ  and c is a constant. The following steps are then used to obtain a 

random variable P̂  from density ( )p P  with the acceptance-rejection method [1]: 

1. Generate a random variable 
*P  from the density ( )h P ; 

2. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1); 

3. If ( ) / ( )U p c h≤ P Pɶ , let *ˆ =P P . Otherwise, return to step 1. 

 
The implementation of the Metropolis-Hastings algorithm starts with the selection of a 

candidate or proposal distribution * ( )( | )tq P P , which is used to draw a new candidate sample 
*P , given the current sample 

( )tP of the Markov chain. Remind that, for the solution of the 
inverse problem within the Bayesian framework, one aims at simulating the posterior 

distribution ( ) ( ) ( )
posterior

π π π∝P Y P P  (see equation 17.b). Hence, the balance (reversibility) 

condition of the Markov chain of interest is given by: 
   

( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorq qπ π=P P P P P P    (28) 

 

In order to avoid eventual cases that 
( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorq qπ π>P P P P P P , that is, 

the process moves from 
( )tP  to 

*P more often than the reverse, a probability * ( )( | )tα P P  is 

introduced in equation (28), so that [1]: 
 

( ) * ( ) * ( ) * ( ) *( ) ( | ) ( | ) ( ) ( | )t t t t

posterior posteriorq qπ α π=P P P P P P P P   (29) 

 
Therefore, 
 

* ( ) *

* ( )

( ) * ( )

( ) ( | )
( | ) min 1,

( ) ( | )

t

posteriort

t t

posterior

q

q

π
α

π
 

=  
  

P P P
P P

P P P
   (30) 

 

where * ( )( | ) 1tα =P P  when the balance condition is satisfied. Equation (30) is also called the 

Metropolis-Hastings ratio. Notice that, for the computation of equation (30), there is no need 
to know the normalizing constant that appears in the definition of the posterior distribution (see 
equations 17.a,b).  
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Equation (29) shows that the probability of moving from the sample at the current state, 
( )tP , 

to 
*P is now given by * ( ) * ( )( | ) ( | )t tq αP P P P . In the Metropolis-Hastings algorithm, a candidate 

*P  is accepted, such as in the acceptance-rejection method described above, based on the 

probability * ( )( | )tα P P . The Metropolis-Hastings algorithm can then be summarized in the 

following steps [1,4,5,20,22,25-29]: 
 

1. Let 1t =  and start the Markov chain with sample 
(1)P  at the initial state. 

2. Sample a candidate point 
*P from a proposal distribution * ( )( | )tq P P . 

3. Calculate the probability * ( )( | )tα P P  with equation (30). 

4. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1). 

5. If * ( )( | )tU α≤ P P , set 
( 1)t+P = 

*P . Otherwise, set 
( 1)t+P = 

( )tP . 

6. Make 1t t= +  and return to step 2 in order to generate the sequence 
(1) (2) ( ){ , , , }nP P P… . 

 
In this way, a sequence is generated to represent the posterior distribution and inference on 

this distribution is obtained from inference on the samples (1) (2) ( ){ , , , }nP P P… . We note that 

values of 
( )tP must be ignored until the chain has not converged to equilibrium (the burn-in 

period).  
 
The proposal distribution plays a fundamental role in the success of the Metropolis-Hastings 

algorithm. Typical choices for * ( )( | )tq P P  are presented below. 

 

(i) Random Walk:  In this case 
* ( )t= +P P Ψ , where Ψ  is a vector of random variables with 

distribution 1( )q ψ . Therefore, * ( )
1( | ) ( )t

q q=P P Ψ . If the proposal distribution is symmetric, that 

is, 1 1( ) ( )q q= −ψ ψ  or * ( ) ( ) *( | ) ( | )t tq q=P P P P , equation (30) reduces to 

  
*

* ( )

( )

( )
( | ) min 1,

( )

posteriort

t

posterior

π
α

π
 

=  
  

P
P P

P
   (31) 

 
Thus, for this choice of the proposal density, equation (31) shows that in step 5 of the 

Metropolis-Hastings algorithm, the candidate point 
*P  is always accepted if the move leads to 

a region of higher posterior probability. Furthermore, the candidate point can also be accepted 

if 
* ( )( ) ( )t

posterior posteriorπ π<P P  with probability * ( )( | )tα P P , thus allowing that the state space 

be highly explored.  
 

Uniform and Gaussian distributions are commonly used for 1( )q ψ . Consider one single 

component jP  of the vector P . For the uniform random walk proposal one can write: 

 
* ( ) (2 1)t

j j j jP P w u= + −     (32.a) 
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where 
ju  is a random number with uniform distribution in (0,1), that is, ~ U(0,1)ju , while 

jw  

is the maximum variation for the parameter at each state of the Markov chain jP .  

 
For the Gaussian random walk proposal, we have 
 

* ( )t

j j jP P r= +      (32.b) 

 

where now 
jr  is a Gaussian random number with zero mean and standard deviation 

js .  

 
(ii) Independent Move:  This choice for this proposal density is of the kind  

* ( ) *
2( | ) ( )t

q q=P P P , that is, it does not depend on the current state 
( )tP . In this case, the 

proposal density * ( )( | )tq P P can be conveniently selected as the prior density *( )π P . By 

utilizing equation (17.b), equation (30) is rewritten as      
 

* * ( )
* ( )

( ) ( ) *

( | ) ( ) ( )
( | ) min 1,

( | ) ( ) ( )

t
t

t t

π π πα
π π π

 
=  

 

Y P P P
P P

Y P P P
  (33.a) 

 
Hence, the Metropolis-Hastings ratio is given by the ratio of the likelihoods, that is, 
 

*
* ( )

( )

( | )
( | ) min 1,

( | )
t

t

πα
π

 
=  

 

Y P
P P

Y P
    (33.b) 

 
Similarly to the random walk proposal, candidates moving to regions of higher probability (in 
this case, the likelihood) are always accepted. Candidates in regions of lower likelihoods can 

be accepted with probability * ( )( | )tα P P . 

 
A Metropolis-Hastings algorithm with an adaptive proposal distribution was presented by 
Haario et al [34]. This algorithm is not Markovian, but results in ergodic distributions. In this 

adaptive algorithm, a Gaussian proposal with center at the sample of the current state, 
( )tP , is 

given by [34,35]: 
 

2
( )

* ( )

2 2
( ) ( )

0.1
N , 2

( | )
2.38 0.1

(1 )N , N , 2

t

t

t t

t

t N
N

q

t N
N N

β β

  
≤  

  = 
    − + >   
   

P I

P P

P Σ P I

  (34) 

where N(a,B) is a Gaussian distribution with mean a and covariance matrix B, N is the number 

of parameters, I is the identity matrix and t
Σ is the covariance matrix of the posterior 

distribution up to the state t. The positive constant β  (0 < β  < 1) is used to promote the mixing 
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between 
2

( ) 2.38
N ,t

t
N

 
 
 

P Σ  and 
2

( ) 0.1
N ,t

N

 
 
 

P I , in order to avoid that the algorithm halt if t
Σ  

is not well defined. 
 
Different modified versions of the Metropolis-Hastings algorithm can be found in the literature 
(see, for example, [29]). In particular, a modified version of the Metropolis-Hastings algorithm 
has been proposed for cases that involve groups of linearly dependent parameters [28,35]. In 
this modified version, the sampling procedure and the acceptance/rejection test are performed 
separately for each block of parameters, within one iteration of the Metropolis-Hastings 

algorithm [28,35]. As an example, consider a case where the vector of parameters P is split 

into two groups of parameters P1 and P2. The Metropolis-Hastings algorithm with sampling by 
block of parameters can then be summarized by the following steps: 

 

1. Let 1t =  and start the Markov chains with the sample 
(1)P . 

2. Sample candidates 
*

1P  from the proposal distribution 
* ( )

1 1 1( | )tq P P  for the vector P1 

and make 
* ( )
2 2

t=P P . 

3. Compute the Metropolis-Hastings ratio 
* ( ) *

* ( ) 1 1 1
1 ( ) * ( )

1 1 1

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

q

q

πα
π

 
=  

 

P Y P P
P P

P Y P P
  (35.a) 

4. Generate a random number with a uniform distribution in (0,1), 1 ~ U(0,1)U . 

5. If 
* ( )

1 1( | )tU α≤ P P , make 
( 1)

1
t+P = 

*
1P . Otherwise, make 

( 1)
1

t+P = 
( )

1
tP . 

6. Sample candidates 
*
2P  from the proposal distribution 

* ( )
2 2 2( | )tq P P  for the vector P2 

and make 
* ( 1)

1 1
t+=P P . 

7. Compute the Metropolis-Hastings ratio  
* ( ) *

* ( ) 2 2 2
2 ( ) * ( )

2 2 2

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

q

q

πα
π

 
=  

 

P Y P P
P P

P Y P P
  (35.b) 

8. Generate a random number with a uniform distribution in (0,1), 2 ~ U(0,1)U . 

9. If 
* ( )

2 2 ( | )tU α≤ P P , make 
( 1)
2

t+P = 
*
2P . Otherwise, make 

( 1)
2

t+P = 
( )
2

tP . 

10. Let 1t t= +  and return to step 2 in order to generate the sequence (1) (2) ( ){ , ,..., }nP P P

. 

 

6. Practical Issues regarding Markov Chain Monte Carlo (MCMC) Methods 
 
The objective of this section is to bring to the reader's attention some important aspects in the 
implementation of Markov Chain Monte Carlo methods. Although the discussion about 
likelihood and prior distributions is not limited to MCMC methods and is pertinent to Bayesian 
techniques in general, it was delayed until this section for the sake of organization of the text. 
Such is also the case regarding hierarchical models. In addition to these concepts, this section 
is also devoted to the analysis of the outputs of Markov chains.  
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Likelihood and Priors 
 
The posterior distribution is proportional to the product of the likelihood function and the prior 
distribution (equation 17.b). As discussed in section 2, the likelihood function involves the 
solution of the mathematical formulation of the physical problem under analysis, that is, the 
solution of the direct or forward model, as well as the measurements and their related 
uncertainties. Measurement errors are modelled after the calibration of sensors and 
instruments used to collect the experimental data. The likelihood in section 2 was considered 
as Gaussian and given by equation (6.b). Such a model is in general appropriate for 
temperature measurements taken with thermocouples or infrared cameras.  For example, 
figure 2.b presents the histogram of the readings (see figure 2.a) of a plate maintained at the 
constant temperature of 23 oC, obtained with a SC7600 Flir infrared camera [36]. This 
histogram clearly approximates a Gaussian distribution. For other likelihood models, 
appropriate to different physical phenomena, the reader is referred to [5].   
 

A Gaussian prior was also considered in section 4, given by equation (18) for a multivariate 

case, with mean µ and covariance matrix V, denoted as ~ N( , )P μ V . For one single 

parameter jP , a Gaussian prior with mean 
jµ and variance 

2
jσ , 

2~ N( , )j j jP µ σ , is given by     

 
2

22

( )1 1
( ) exp

22

j j

j

jj

P
P

µ
π

σπσ

 −
= − 

  
 in  

jP−∞ < < ∞   (36) 

 
 

(a) (b) 

Figure 2. (a) Thermal image with an infrared camera of an isothermal plate;  

(b) Histogram of the temperature measurements [36]. 

 

Random variables modelled by the Gaussian prior have support in R. Hence, they may assume 
negative values, although this might happen with small probabilities depending on the values 
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of 
jµ  and 

2
jσ . On the other hand, several physical parameters only allow positive values, such 

as, for example, thermal conductivity, specific heat and thermal diffusivity.  
 
A very simple prior that allows lower and upper bounds for the parameter values is the Uniform 

distribution ~ U( , )jP a b   given by 

 

1
,

( )( )

0 ,

j

j

a P b
b aP

elsewhere

π
 < < −= 



    (37) 

 

Mean and variance for the uniform distribution are given by 
1

( )
2

a b+  and 21
( )

12
b a− , 

respectively. In the uniform distribution, any value in 
ja P b< <  is equally probable. If in this 

interval, values around a known mean are more likely to occur than elsewhere, like in a 

Gaussian distribution, but the probability density is zero in 
jP a≤  and 

jP b≥ , one possible 

prior can be obtained by combining equations (36) in (37), which is called truncated Gaussian 
distribution, that is,   
 

2

22

( )1 1
exp ,

2( ) 2

0 ,

j j

j

jj j

P
a P b

P

elsewhere

µ
σπ πσ

  −
− < <  =    




    (38) 

where 
ja bµ< < . 

 
Other distributions that satisfy positive constraints are available. For example, the Rayleigh 

distribution 0~ R( )jP γ  is given by  

 
2

2
0 0

1
( ) exp

2

j j

j

P P
Pπ

γ γ

  
 = −      

 for  0jP >   (39) 

 

and depends only on the scale parameter (centerpoint) 0γ . The mean and the variance of 

Rayleigh's distribution are given by 0
2

πγ  and 2
0

4

2

π γ−
, respectively. 

 

The Gamma distribution with parameters α  and β , denoted as ~ G( , )jP α β , has the 

following density: 
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11
( ) exp

( )

j

j j

P
P P

α
απ

β α β
−  

= −  Γ  
 for  0jP >   (40) 

 

with mean αβ and variance 2αβ , where ( )αΓ  is the gamma function. For 1β =  , the so-called 

one-parameter gamma distribution is obtained. The density that results by making 1α =  is 

called exponential distribution. 
 

The Beta distribution ~ Be( , )jP α β  has support in 0 1jP< < . The density of this distribution 

is given by 
 

1 1( )
( ) (1 )

( ) ( )
j j jP P Pα βα βπ

α β
− −Γ += −

Γ Γ
 in 0 1jP< <   (41) 

 

with mean 
α

α β+
and variance

2( ) ( 1)

αβ
α β α β+ + +

.  

 

Figure 3 illustrates the probability distributions U(0,1) , 2N(0.5,0.5 ) , R(0.5) , G(1.5,1.5)  and 

Be(1.5,1.5) . These distributions were normalized by their maximum values to allow 

comparison among them.  

 
Figure 3. Probability distributions 
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The probability distributions given by equations (36) to (41) were written for one single random 
variable, but they can be easily extended for multivariate cases [1,4,5,8,28]. The multivariate 
Gaussian distribution is given by equation (18).  
 
A multivariate prior is usually required for the solution of inverse problems in situations where 
the parameters represent point values of a function. Such is the case illustrated by figure 1 for 
time varying functions. Another typical case involves spatially distributed functions, like a 

thermophysical property that varies within the medium, where the parameter jP is then 

associated to an average value of the function in a finite volume resulting from the 
discretization of the spatial domain. Markov Random Fields can be used to generate priors for 

these situations [5]. A collection 1 2{ , , , }
N

P P P…  is a Markov Random Field if the full conditional 

distribution of 
jP  depends only on its set of neighbours [28].  

 
A common use of a Markov Random Field is for priors that resemble Tikhonov's regularization 
[5], written in the following general form 
 

21
( ) exp ( )

2
π γ ∝ − −  

P D P Pɶ     (42) 

 
where ||.|| denotes the L2 norm. The constant γ  is a parameter associated with uncertainties 

in the prior and Pɶ  is a reference value for P . The matrix D  is such that each line of ( )−D P Pɶ  

involves the parameter 
jP  corresponding to that line and its neighbors, in order to characterize 

a Markov random field. For cases that P  represent point values of a one-dimensional function 
(such as a function varying in time or in one single spatial coordinate), matrices like those used 
in Tikhonov's regularization serve well for this purpose. For example, one may use  
 

1 1

1 1

1 1

− 
 − =
 
 − 

D
⋱ ⋱

 with size ( 1) xN N−   (43.a) 

 
or  
 

1 2 1

1 2 1

1 2 1

− 
 − =
 
 − 

D
⋱ ⋱ ⋱

 with size ( 2) xN N−   (43.b) 

 
 
Equation (42) can be rewritten as 
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1
( ) exp ( ) ( )

2
Tπ γ ∝ − − −  

P P P Z P Pɶ ɶ    (44.a) 

 
where 
 

T=Z D D     (44.b) 
 
Equation (44.a) is in a form similar to that of a Gaussian distribution. For this reason, it is also 
called a Gaussian Markov Random Field [28] or a Gaussian Smoothness Prior [5]. By 
comparing equation (44.a) with the canonical Gaussian multivariate distribution, one can notice 

that the mean and the covariance matrix of this prior are given by Pɶ  and 1 1γ − −Z , respectively. 

Therefore, we can write the Gaussian Smoothness Prior as 
 

1/2/2 /2 1 1
( ) (2π) exp ( ) ( )

2
N N Tπ γ γ

−− −  = − − −  
P Z P P Z P Pɶ ɶ   (45) 

 
An important remark about this prior is that, with D  given by equations (43.a,b), its variance is 

unbounded, since the matrix Z  is singular and 
1−Z  does not exist. Densities with unbounded 

variances are denoted as improper [5,28]. 
 
We now discuss another Markov Random Field prior, which gives high probabilities for 
piecewise regular solutions with sparse gradients. The Total Variation (TV) prior satisfies these 
characteristics, being quite appropriate for spatially varying functions that contain large 
variations at few boundaries within the domain and with small variations within the regions 
limited by such boundaries [5]. The TV prior is given by [5]: 
     

[ ]( ) exp ( )TVπ γ∝ −P P     (46) 

where  

1

( ) ( )
N

j

j

TV V
=

=P P  
1

( )
2

j

j ij i j

i N

V l P P
∈

= −P   (47.a,b) 

being jN  the set of neighbors to jP  and ijl  the length of the edge between neighbors.  

 
The TV prior is improper, such as the Gaussian smoothness prior. The representation of 
equation (46) in terms of a canonical probability density would require the derivation of an 

expression for the normalizing constant ( )
N

R
dπ P P , or, at least, practical means for its 

computation. Although improper priors need to be used with caution, they do not pose 
difficulties for the application of the Metropolis-Hastings algorithm, since the normalizing 

constants of such densities are cancelled when * ( )( | )tα P P  is computed with equation (30). 

On the other hand, both the Gaussian smoothness prior and the TV prior involve an additional 
parameter γ  that needs to be specified for the application of MCMC methods. The 

specification of a value for such parameter can be made my numerical experiments, by using 
simulated experimental data that serve as a reference for the inverse problem under analysis. 
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On the other hand, within the Bayesian framework, if a parameter is not known it shall be 
regarded as part of the inference problem, leading to the use of hierarchical (hyperprior) 
models, as described below.    
 
 
Hierarchical Models 
 
The parameter γ  appearing in the Gaussian smoothness prior given by equation (45) can be 

treated as a hyperparameter, that is, be estimated as part of the inference problem [5]. 
Consider, for example, the hyperprior density for γ  in the form of a Rayleigh distribution (see 

equation 39), where the scale parameter 0γ  needs to be chosen in advance. Therefore, the 

posterior distribution, with the Gaussian likelihood given by equation (6.b), can be written as: 
 

2

( 2)/2 1

0

1 1 1
( , ) exp [ ( )] [ ( )] ( ) ( )

2 2 2
N T T γπ γ γ γ

γ
+ −

   ∝ − − − − − − −  
   

P Y Y T P W Y T P P P Z P Pɶ ɶ  

   
(48)

  
 
On the other hand, the parameter γ  appearing in the TV prior given by equation (46) cannot 

be treated as a hyperparameter. Such is the case because the normalizing constant of such 
prior is of difficult calculation and also depends on γ . Therefore, without the computation of 

the normalizing constant for this case, the effects of γ  as a hyperparameter would not be 

correctly accounted for in the posterior distribution.  
 
 
Output Analysis  
 
We basically follow references [22,28] for the material presented in this section and consider 

the analysis on a single component jP of the vector of parameters P . Let 
(1) (2) ( ){ , , , }
j j j

nP P P…  

be a homogeneous and reversible Markov chain for jP . A function 
( )( )
j

nf P  from the sample 

(1) (2) ( ){ , , , }
j j j

nP P P…  is called a statistic if it does not depend on any other unknown parameters. 

Some useful statistics are: 
 

Minimum Value:  
( ) ( ) (1) (2) ( )

,min( ) min{ , , , }
j j j j

n n n

jf P P P P P= = …    (49.a) 

Maximum Value:  
( ) ( ) (1) (2) ( )

,max( ) max{ , , , }
j j j j

n n n

jf P P P P P= = …    (49.b) 

Median:   
( ) ( ) (1) (2) ( )( ) med{ , , , }
j j j j j

n n nf P P P P P= =ɶ …    (49.c) 

Mean:   ( ) ( ) ( )

1

1
( )

j j j

n
n n t

t

f P P P
n =

= =       (49.d) 

Variance:  ( )2
( ) ( ) ( ) ( )

1

1
( ) var( )

1j j j j

n
n n t n

t

f P P P P
n =

= = −
−     (49.e) 
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Since 
(1) (2) ( ){ , , , }
j j j

nP P P…  are realizations of a random variable, a statistic is itself a random 

variable as well. A statistic of the sample will be a good representation of a statistic of the 
population if the sample is a good representation of the population. This certainly depends on 

the size n and on the independence of the individuals of the sample. Furthermore, since the 

sample 
(1) (2) ( ){ , , , }
j j j

nP P P…  is obtained from a Markov chain, the chain should already have 

reached equilibrium before statistics can be computed to represent the solution of the inverse 
problem. For this reason, states of the Markov chain are discarded before the chain reaches 

equilibrium, which is called the burn-in period. If z states are needed for the chain to reach 

equilibrium, the sample used for the computation of the statistics is 
( 1) ( 2) ( ){ , , , }
j j j

z z nP P P+ +
… . The 

index of this sample is changed from 1, ,t z n= + …  to 1, ,r s= …  for simplicity in the notation, 

where s n z= −  is the number of samples used for the computation of the statistics. 

 

The mean of the sequence { }( ) (1) (2) ( ), , ,
j j j j

r s
P P P P≡ …  is       

 

( )

1

1 s
s r

j j

r

P P
s =

=       (50) 

 
If the chain is ergodic, this mean provides a strongly consistent estimate of the mean of the 
limiting distribution, that is, 
 

ass

j j
P E P s → → ∞     (51) 

 
This result is the equivalent of the law of large numbers for a Markov chain.  
 

If { }(1) (2) ( ), , , s

j j j
P P P…  are independent samples, then the variance of the mean 

s

jP  is  

 
( )var[ ]

var[ ]
r

js

j

P
P

s
=     (52.a) 

 

where ( )var[ ]r

j
P  is the variance of { }(1) (2) ( ), , , s

j j j
P P P… . On the other hand, since the samples 

are in general correlated, equation (52.a) is rewritten as 
 

( )var[ ]
var[ ]

r

j js

j

P
P

s

τ
=     (52.b) 

 

where 
jτ  is the integrated autocorrelation time (IACT) for parameter jP , which represents the 

number of correlated samples between independent samples in the chain  

{ }(1) (2) ( ), , , s

j j j
P P P… .  Therefore, the effective chain size, which gives the number of 

independent samples in the chain, is , /eff j js s τ= . 
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The autocovariance function of lag k of the chain for the parameter jP is defined by: 

 
( ) ( )( ) cov[ , ]r r k

j j j
C k P P

+=     (53) 

 

Clearly, the variance of 
( )r

jP  is (0)jC . 

 

The normalized autocovariance function of lag k is given by 
 

( )
( )

(0)

j

j

j

C k
k

C
ρ =      (54) 

 

so that (0) 1jρ = , which means that 
( )r

jP  is perfectly correlated with itself. The calculation of 

the normalized autocovariance function is straightforward, since several computational 
packages have functions available for such a purpose.     
 
The integrated autocorrelation time is related to the normalized autocovariance function by 
 

1

1 2 ( )j j

k

kτ ρ
∞

=

= +      (55) 

 

For the calculation of 
jτ , the summation in equation (55) needs to be truncated at a finite 

number of terms 
*

s s≤ . In fact, ( )j kρ  is expected to tend to zero as k  increases, but it will 

be dominated by noise for large k . Therefore, 
*

s  can be selected by increasing k  until ( )j kρ  

approaches zero, thus avoiding the terms that are dominated by noise.  
 

For s  sufficiently large and for an uniformly ergodic chain, the distribution of 
var[ ]

s

j j

s

j

P E P

P

 −  
, 

where var[ ]s

jP  is given by equation (52.b), tends to a standard Gaussian distribution, with zero 

mean and unitary standard deviation. Thus,  
 

N(0,1) as
var[ ]

s
d

j j

s

j

P E P
s

P

 −   → → ∞    (56) 

 

where 
d

→  indicates that the distribution of the random variable on the left tends to the 

distribution on the right. Equation (56) is an statement of the central limit theorem of the 

distribution of 
s

jP . Therefore, the mean of the samples in the Markov chain can be calculated 
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with related uncertainties as var[ ]s s

j j
P Pη± , where η  is a constant that defines the 

approximate confidence interval of 
s

jP  (η = 2.576 for a 99% confidence interval).  

 

The statistical efficiency of the sampling algorithm can be assessed by examining 
jτ  for each 

parameter jP , j = 1,...,N. Algorithms that result in small values of 
jτ  promote better sampling. 

For cases involving many parameters, the statistical efficiency can be examined with the 

integrated autocorrelation time of the posterior distribution ( )( | )rπ P Y , 1, ...,r s=  [35]. 

 
Quantitative techniques are available for the analysis of the convergence of a Markov chain to 
an equilibrium distribution. Geweke´s technique [37] compares the means calculated with the 
samples from different ranges of states of the Markov chain. Let: 
 

( )

1

1 as
a r

j j

ra

P P
s =

=    and  
( )

*

1 s
b r

j j

r sb

P P
s =

=     (57.a,b) 

 

be the means calculated with sa and sb states, respectively. Geweke [37] recommends: 
   

* 1bs s s= − +  ; 0.1
a

s s=  ; 0.5
b

s s=   (57c-e) 

 
For the convergence analysis, it is also recommended to repeat the sampling procedure by 
starting the Markov chains from different initial values. Gelman and Rubin [38] developed a 
method for inference on multiple chains, based on two steps: (i) An estimate is obtained for 
the posterior distribution with an initial Markov chain, which is then used to start new 
independent chains. The initial states for these new multiple chains must have a dispersion 
larger than that of the initial chain; (ii) The new multiple chains are then used for inference with 
analyses inter chains and within each chain. The posterior distribution simulated with the 
multiple chains exhibit a variability larger than that of the initial chain.  
 
The multiple chains also allow a convergence analysis to an equilibrium distribution that 
represents the sought posterior. We consider the case of a parameter  

jP ,   j = 1, ..., N. The variance of the means of m chains, each one with n states, is given by 

[38]:   
 

( )2

1

1

( 1)

m
j k

j j

k

B
P P

n m =
= −

−      (58) 

 

where 
k

jP  is the mean of the chain k, k = 1,...,m, and 
j

P  is the mean of these means.  

 

The mean of the m variances of the chains k = 1,...,m, is given by [38]: 
 

( )2( ),

1 1

1

( 1)

m n
s k k

j j j

k s

W P P
m n = =

= −
−      (59) 
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where 
( ),s k

jP  is the sample for 
jP  at the state s, s = 1,…,n, of chain k, k = 1,...,m. 

 

The variance of the posterior distribution simulated with the multiple chains for 
jP  is thus 

obtained as [38]: 
 

2 1
ˆ 1

j

j j

B
W

n n
σ  = − + 

 
     (60) 

 

This variance of the mn samples of the multiple chains, 
2ˆ
jσ , overestimate the variance of the 

actual posterior, while the equilibrium distribution has not been reached. On the other hand, 

Wj underestimates the variance of the actual posterior if each chain has not reached 
equilibrium. Gelman and Rubin [38] thus proposed a parameter to indicate convergence based 

on 
2ˆ
jσ  and Wj, called scale reduction coefficient, which was simplified by Gamerman and 

Lopes [28], and is given by: 
 

2ˆ
ˆ j

j

j

R
W

σ
=       (61) 

 

Note that ˆ 1jR > , but ˆ 1jR →  when n → ∞ . Gelman and Shirley [39] have suggested the 

empirical test ˆ 1.1jR <  for convergence of the multiple chains, but larger threshold values have 

also been proposed [28].    
 
 
7. Reduction of the Computational Time for Markov Chain Monte Carlo (MCMC) Methods 
 
For many cases, the computation of the direct problem solution, needed for the solution of the 
inverse problem, is very time-consuming. Limitations are then imposed on the number of states 
of the Markov chain that can be computed within a feasible time, which can make the use of 
standard MCMC methods impractical, especially when the number of unknown parameters is 
large. One possible way to overcome such difficulties is to use model reduction or surrogate 
techniques, instead of the complete model, for the computation of the direct problem solution 
at each state of the Markov chain.  
 
Since reduced or surrogate models do not exactly reproduce the associated complete 
formulation of direct problems, different approaches have been developed in order to improve 
the solution of inverse problems obtained with these approximate models. Among such 
approaches, we have the Delayed Acceptance Metropolis-Hastings (DAMH) algorithm [40] and 
the Approximation Error Model (AEM) [5,41-45]. In the DAMH algorithm [40], the Metropolis-
Hastings (MH) algorithm is regularly applied with the reduced model. If a proposal sample is 
accepted with the reduced model, another test of Metropolis-Hastings is performed with the 
complete model, to finally decide if such sample should be accepted or not. In this sense, the 
DAMH can be seen as two nested Metropolis-Hastings algorithms, where the outer loop acts 
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as a filter to pre-evaluate proposal candidates with the reduced model. In the AEM approach 
[5,41-45], the statistical model of the approximation error is constructed from the prior 
information and then represented as additional noise in the measurement model, for the 
solution of the inverse problem.  It should be noted that there is a fundamental difference 
between the DAMH and the AEM approaches. While the AEM uses the posterior modified by 
the error of the reduced model, the DAMH generates samples from the correct posterior. Such 
two approaches were successfully applied to a three-dimensional inverse heat conduction 
problem in reference [46]. 
 
 
Delayed Acceptance Metropolis-Hastings (DAMH) Algorithm 
 
The DAMH algorithm can be summarized as follows [40]: 
 

1. Let 1t =  and start the Markov chain with the sample 
(1)P  at the initial state. 

2. Sample a candidate point 
*P from a proposal distribution * ( )( | )tq P P . 

3. Calculate the probability * ( )( | )t

redα P P  by using the reduced model, where 

 
* ( 1) *

* ( )

( 1) * ( 1)

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t red

red t t

red

q

q

πα
π

−

− −

 
=  

 

P Y P P
P P

P Y P P
  (62.a) 

 

4. Generate a random value ~ U(0,1)
red

U . 

5. If * ( )( | )t

red redU α≤ P P , proceed to step 6. Otherwise, return to step 2. 

6. Calculate a new acceptance factor with the complete model 
 

* ( 1) *
* ( )

( 1) * ( 1)

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

q

q

πα
π

−

− −

 
=  

 

P Y P P
P P

P Y P P
  (62.b) 

 

7. Generate a new random value ~ U(0,1)U . 

8. If * ( )( | )tU α≤ P P  set 
( 1)t+P = 

*P . Otherwise, set 
( 1)t+P = 

( )tP . 

9. Make 1t t= +  and return to step 2 in order to generate the sequence 
(1) (2) ( ){ , , , }nP P P… . 

 

where ( | )
red

π P Y and ( | )π P Y  are the posterior distributions with the likelihoods computed 

with the reduced model and with the complete model, respectively. 
  
With the DAMH algorithm, it is expected to take advantage of the fast computations of the 
reduced model in order to find, in step 5, possible candidates to be accepted with the complete 
model in step 8. The DAMH algorithm can be quite effective, especially in the case of a low 
acceptance ratio of the Metropolis-Hastings algorithm. Therefore, depending on how fast the 
solution of the reduced model is as compared to that of the complete model, as well as on the 
acceptance ratio, the use of the DAMH algorithm might result in significant reductions in 
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computational times, as compared to those from the regular Metropolis-Hastings algorithm 
applied with the complete model. 
 
 
Approximation Error Model (AEM) Approach 
 
In the approximation error model (AEM) approach, the statistical model of the approximation 
error is constructed and then represented as additional noise in the measurement model [5,41-
45]. With the hypotheses that the measurement errors are additive and independent of the 

parameters P, one can write 
 

( )= +Y T P ε      (63) 

 

where ( )T P  is the sufficiently accurate solution of the complete direct (forward) model. The 

vector of measurement errors,ε , are assumed here to be Gaussian, with zero mean and 

known covariance matrix W, so that the likelihood function is given by equation (6.b). 
  

If the solution of a reduced model, ( )
red

T P , is used for the solution of the inverse problem in 

place of the solution of the complete model, ( )T P , equation (63) becomes 

 

( ) [ ( ) ( )]
red red

= + − +Y T P T P T P ε     (64) 

 
By defining the error between the complete and the reduced model solutions as 
 

( ) [ ( ) ( )]
red

= −e P T P T P     (65) 

 
equation (64) can be written as 
 

( ) ( )
red

= +Y T P η P     (66) 

 
where 
 

( ) ( )=η P e P + ε      (67) 

 

One difficult with such an approach is to model the error ( )η P , which includes the direct 

problem solution errors, ( )e P , as well as the experimental errors, ε . A simple, but very effective 

approximation error approach, is to model such an error as a Gaussian variable [5,41-45]. 
Another important point for the implementation of the approximation error model is that the 

statistics of ( )η P , like its mean and covariance matrix, are computed before the estimation 

procedure, based on the prior distribution [5,41-45]. Therefore, the use of the approximation 
error model with improper priors is not possible, since they exhibit unbounded variances. 
Consider, for instance, a Gaussian prior and a Gaussian likelihood, given by equations (18) 
and (6.b), respectively. By using the approximation error model approach, the posterior 
distribution is given by [41]: 
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( ) ( )1 11 1
( ) exp [ ( ) ] [ ( ) ]

2 2

TT

red redπ − − ∝ − − − − − − − − 
 

P Y Y T P η W Y T P η P μ Γ P μɶ

 
(68) 

 

where  
 

= + + −-1
ηPη ε e Γ Γ (P μ)

     
(69.a) 

e= + − -1
ηP PηW W W Γ Γ Γɶ

     
(69.b) 

 

and ε
 
and e  are the means of ε and e, respectively, while 

e
W  is the covariance of e and 

ηPΓ  

is the covariance of η and P.  Equations (69.a,b) give the complete error model [41]. We note 

that, with the standard hypotheses regarding the measurement errors made above, 0=ε . By 

further neglecting the dependency of η and P, that is, 0=ηPΓ , equations (69.a,b) simplify to 

the so-called enhanced error model: 
 

≈η e
      

(70.a) 

e≈ +W W Wɶ

     
(70.b) 
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