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Abstract. In the second part of this lecture, the special case of modal reduction

is discussed. This method allows to greatly reduce the size of the model in case

of complex geometry. The principle of this technique is presented. A focus on the

AROMM method is carried out. We insist on the necessity to choose a modal basis

adapted to the physical problem. Di�erent principles of reduction are introduced.
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1 Introduction

As computer hardware is developing, the requirements for numerical simulation are becoming
more demanding.
First, geometries have to perfectly match the reality of the simulated object. A recent study
[1] has shown that the exact numerical modeling of a simple electronic component needs a
mesh of 422k nodes. This order of magnitude has to be compared to industrial demand, that
is to obtain the simulation of an entire electronic card.
Furthermore, we are also demanding for more and more realistic consideration of physical
phenomena. In thermal problems, infrared radiations for example, highly complicates the
heat transfer simulations [2].
Considering the inverse approach, this e�ect is ampli�ed by the iterative procedure which
involves the use of an important number of simulations 1.
For all those reasons, model reduction is a topical issue. The idea consists in searching the
whole temperature �eld by using a small number of unknowns.

2 Context of the study: the heat equation

The problem is the following: the domain Ω, delimited by boundary Γ, is characterized by its
thermal conductivity k(M, t) [W.m−1.K−1] and its volumetric heat capacity c(M, t) [J.m−3.K−1].
This domain receives two types of thermal loadings:

� the in�uence of the environment, which is characterised by a temperature Tf (M, t) [K]
and a heat exchange coe�cient h(M, t) [W.m−2.K−1],

� the thermal dissipation, which can be a volumetric power on the domain π(M, t) [W.m−3]
or a surface load on the border ϕ(M, t) [W.m−2].

Such a problem is modeled by the following equations: ∀M ∈ Ω : c
∂T

∂t
=
−→
∇ · (k

−→
∇T ) + π

∀M ∈ Γ : k
−→
∇T ·

−→n = ϕ+ h(Tf − T )
(1)

For complex geometries, the solution of this problem is numerical and needs a spatial dis-
cretization. Let g be the test function, de�ned on the Hilbert space H1(Ω). The weak
variational formulation of Eq. (1) writes:

∀g ∈ H1(Ω),

∫
Ω
g c

∂T

∂t
dΩ = −

∫
Ω
k
−→
∇g ·

−→
∇T dΩ−

∫
Γ
g h T dΓ

+

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ h Tf ) dΓ

(2)

It should be noted that it would be possible to consider:

� an anisotropic thermal conductivity characterized by a tensor k,

� an advection - conduction problem, by adding a transport term to the heat equation,

� infrared radiation between boundaries.

1In case of linear inverse problem, even if it is possible to use a direct procedure, this one needs one matrix
inversion.
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The addition of these terms does not change anything for the reduction method, and we will
consider afterwards the problem de�ned by Eq. (1).
The spatial discretization of Eq. (2) leads to the following equation (according to the order
of terms) :

C
dT

dt
= AT+U (3)

where C et A are respectively the capacity and the conductivity matrices, of dimension
[N ×N ], where N is the number of degrees of freedom (DOF) for the considered discretized
domain. T is the temperature vector, which depends on time, and U is the load vector. The
dimension of all these vectors are [N ].
This equation constitutes the complete heat problem, and might be characterized by a large
number of DOF2 in case of complex geometry.

3 The modal reduced model principle

This method is based on time-space separation:

T (M, t) =

∞∑
i=1

Vi(M) xi(t) (4)

Considering the space functions Vi(M) as being known, the determination of the temperature
�eld results in computing excitation states xi(t). It is important to notice that relation (4)
is true only if the set of spatial functions Vi(M) form a basis of the solutions space of the
thermal problem (2), which is not always garanted.
The idea is then to rewrite this formulation using a limited number n of space functions
∼
V i(M), that leads to an acceptable reconstitution of the thermal �elds

∼
T (M, t) ' T (M, t):

∼
T (M, t) =

n∑
i=1

∼
V i(M)

∼
xi(t) (5)

Whatever the reduction technique used, the reduced model is obtained by projection of the

heat equation on the subspace de�ned by the space functions
∼
V i(M). Equation (2) becomes:

∀g ∈ H1(Ω),∫
Ω
g c

∂

∂t

(
n∑
i=1

∼
V i
∼
xi

)
dΩ =

−
∫

Ω
k
−→
∇g ·

−→
∇

(
n∑
i=1

∼
V i
∼
xi

)
dΩ−

∫
Γ
g h

(
n∑
i=1

∼
V i
∼
xi

)
dΓ

+

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ hTf ) dΓ

(6)

Considering that the set of spatial functions
∼
V i(M) forms an approximated basis for the

physical problem, these functions can be used as test functions for the variational formulation:

g(M) =
∼
V j(M). After rearrangement, we have:

2For a �nite di�erences method or for a �nite elements method for which the interpolation functions are
linear, the DOF corresponds to the mesh nodes.
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∀
∼
V j ∈ H1(Ω), j ∈ {1, n},

n∑
i=1

(∫
Ω

∼
V j c

∼
V i dΩ

)
d
∼
xi
dt

=

−
n∑
i=1

(∫
Ω
k
−→
∇
∼
V j ·
−→
∇
∼
V i dΩ +

∫
Γ

∼
V j h

∼
V i dΓ

)
∼
xi

+

∫
Ω

∼
V j π dΩ +

∫
Γ

∼
V j (ϕ+ hTf ) dΓ

(7)

After spatial discretization, function
∼
V i(M) becomes a vector

∼
Vi [N ] resulting in:

∀ j ∈ {1, n} ,
n∑
i=1

∼
V

t

j C
∼
Vi

d
∼
xi
dt

= −
n∑
i=1

∼
V

t

j A
∼
Vi

∼
xi +

∼
V

t

j U (8)

We name
∼
V [N ×n] the matrix which gathers the n discretized functions

∼
Vi [N ], and

∼
X(t) [n]

the vector of the n time-dependent excitation states
∼
xi(t) associated to the space functions:

∼
V

t

C
∼
V
d
∼
X

dt
=
∼
V

t

A
∼
V
∼
X+

∼
V

t

U (9)

Under compact form:

L
d
∼
X

dt
= M

∼
X+N (10)

with L =
∼
V

t

C
∼
V and M =

∼
V

t

A
∼
V whose dimensions are [n×n], and vector N =

∼
V

t

U [n].

This formulation leads to the reduction of the number of DOF, because the complete model
given by Eq. (3) is characterized by N unknowns, while the dimension of the modal model

de�ned by Eq. (10) corresponds to the n space functions
∼
V i(M).

From this formulation, di�erent methods exist to retrieve the modes:

� The principle of the POD (Proper Orthogonal Decomposition) is the identi�cation of the

space functions
∼
V i(M) from several reference temperature �elds (noted Tref (M, t) for a

thermal problem). This technique has been used in a lot of studies [3, 4, 5, 6, 7, 8, 9, 10].

� The MIM (Modal Identi�cation Method) is based on the direct identi�cation of the
matrices of Eq. (10) from simulations or measurements. This technique has been widely
used for inverse problems [11, 12, 13, 14, 11, 15, 16].

� The PGD (Proper Generalized decomposition) is a generalization of the decomposition
principle: the temperature is written as a multiple product of a set of functions, where
each of these functions depends on one variable (time, space) or on one parameter (heat
capacity, thermal conductivity, ...). These functions are computed by enriching the basis
at each iteration [17, 18, 19, 20].
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� The AROMM (Amalgam Reduced Order Modal Model) method follows both steps
which appear in the modal principle, that is:

� to compute a complete basis {Vi(M)}i∈N, on which it is possible to proceed to a
rigorous decomposition of the thermal �elds:

T (M, t) =
∞∑
i=1

Vi(M) xi(t) (11)

� to obtain a reduced basis {Ṽi(M)}i∈[1,n], in order to decrease the model order3

while keeping a satisfactory estimation of the thermal �eld:

T (M, t) '
n∑
i=1

∼
Vi(M)

∼
xi(t) (12)

The goal of this lecture consists in presenting this method.

4 The complete basis computation

We search a set of spatial functions that forms a basis for the considered thermal problem.
This set depends on the solutions space.

4.1 Classical basis

4.1.1 The Fourier basis

We �rst consider a thermal problem characterized by homogeneous boundary conditions: ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇ · (k0

−→
∇T ) + π

∀M ∈ Γ : k0
−→
∇T ·

−→n = −h0 T
(13)

The physical parameters (heat capacity c0, thermal conductivity k0, and global heat exchange
coe�cient h0) are functions of space only.
Functions V̂ F

i (M) are solutions of the eigenvalue problem associated to the physical problem: ∀M ∈ Ω :
−→
∇ ·

(
k0
−→
∇V̂ F

i

)
= zFi c0 V̂

F
i

∀M ∈ Γ : k0
−→
∇V̂i ·−→n = −h0 V̂F

(14)

zFi [s−1] is the eigenvalue associated to each eigenvector V̂ F
i . The inverse of this quantity is a

time τFi [s] named the time constant of the eigenvector. It characterizes the dynamic of the
eigenmode:

τFi =
−1

zFi
(15)

Fourier eigenmodes (Figure 1.a) can be considered as particular temperature �elds: the eigen-
value problem corresponds to a stationary physical problem with a volumetric thermal load
proportional to the eigenmode value at each point of the domain, and with homogeneous
boundary conditions.

3As we will see later, the reduced functions Ṽi(M) do not correspond necessary to the functions Vi(M) of
the complete basis. This explains the change of notation
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The variational formulation of the eigenvalue problem reads :

∀g ∈ H1(Ω), −
∫

Ω
k0
−→
∇g ·

−→
∇V̂ F

j ∂Ω−
∫

Γ
g h0 V̂

F
i = zFi

∫
Ω
g c0 V̂

F
i ∂Ω (16)

For complex geometries, such eigenvalue problem is solved numerically, from a spatial dis-
cretization characterized by N DOF. The number of numerically accessible eigenmodes be-
comes �nite and equal to N . The numerical solution is performed by the Lanczos method [21],
from the discrete formulation of Eq. (16). Using the same matrix than speci�ed previously
(Eq. (3)), we have:

A V̂
F
i = zFi C V̂

F
i (17)

This method is implemented in all principal languages (Matlab since 1996 [22], Arpack since
1998 [23]). It computes the eigenmodes according to the order of the largest time constants τFi .

The set of eigenmodes V̂ F
i forms a basis for the subspace H1

F (Ω) ⊂ H1(Ω), which corresponds
to the space of solutions of the physical problem (13).

The eigenmodes are mutually-orthogonal according to a scalar product < u, v >=
∫

Ω ucv∂Ω:

∀i 6= j, < V̂ F
i , V̂

F
i >=

∫
Ω
V̂ F
i c0 V̂

F
j ∂Ω = 0 (18)

The magnitude of each mode is imposed by the chosen normalization:

V F
i =

V̂ F
i(∫

Ω
V̂ F
i c0 V̂

F
i dΩ

)1/2
(19)

The �rst orthogonality property is thus:

∀i, j ∈ N, < V F
i , V

F
j >=

∫
Ω
V F
i c0 V

F
j ∂Ω = δij (20)

By choosing the eigenmode V F
j as test function in Eq. (16), we have:

−
∫

Ω
k0
−→
∇V F

i ·

−→
∇V F

j dΩ−
∫

Γ
V F
i h0 V

F
j dΓ = zFi

∫
Ω
V F
i c0 V

F
j dΩ (21)

The second orthogonality property is obtained by combining Eq. (20) and Eq. (21):

−
∫

Ω
k0
−→
∇V F

i ·

−→
∇V F

j dΩ−
∫

Γ
V F
i h0 V

F
j dΓ = zFi δij (22)

We saw previously that the state equation has been obtained by the projection of the thermal
problem on the reduced basis (Eq. (7)). In the case where the complete basis

(
zFi , V

F
i

)
is

used, we obtain:

∀ j ∈ N?,
∞∑
i=1

(∫
Ω
V F
j c0 V F

i dΩ

)
∂xi
dt

=

−
∞∑
i=1

(∫
Ω
k0
−→
∇V F

j ·

−→
∇V F

i ∂Ω +

∫
Γ
V F
j h0 V

F
i ∂Γ

)
xi

+

∫
Ω
π V F

j ∂Ω

(23)
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Thanks to the orthogonality properties (Eqs. (20) and (22)), the state equations are fully
decoupled:

∀ j ∈ N?,
∂xj
∂t

= zFj xj +

∫
Ω
V F
j π ∂Ω (24)

As we will see later, the reduced basis

(
∼
z
F

i ,
∼
V
F

i

)
is built from the complete basis

(
zFi , V

F
i

)
,

such as the orthogonality properties (Eqs. (20) and (22)) are preserved. The decoupled state
equation (24) allows to obtain an immediate resolution.
The Fourier basis is valid for a linear thermal problem, with stationary parameters and with
homogeneous boundary conditions, whatever the value of the thermal exchange coe�cient
h0(M).

In the particular case where ∀M ∈ Γ, h0 = 0, we have the Neumann problem : ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇ · (k0

−→
∇T ) + π

∀M ∈ Γ :
−→
∇T ·

−→n = 0
(25)

It is associated to the Neumann eigenvalue problem : ∀M ∈ Ω :
−→
∇ ·

(
k0
−→
∇V̂ N

i

)
= zNi c0 V̂

N
i

∀M ∈ Γ :
−→
∇V̂ N

i ·
−→n = 0

(26)

The set of eigenvectors V̂ N
i forms a basis for the subspace H1

N (Ω) ⊂ H1(Ω). They are
characterized by a null heat �ux on the boundaries (Figure 1.b).

4.1.2 The Dirichlet basis

We consider a Dirichlet problem characterized by the following equations: ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇ · (k0

−→
∇T ) + π

∀M ∈ Γ : T = 0
(27)

This problem de�nes a particular space of solutions named Dirichlet space H1
0 , which is a

subspace of the Hilbert space H1.

Eigenvectors V̂ D
i (M) are obtained by the resolution of the following eigenvalue problem : ∀M ∈ Ω :

−→
∇ ·

(
k0
−→
∇V̂ D

i

)
= zDi c0 V̂

D
i

∀M ∈ Γ : V̂ D
i = 0

(28)

The variational formulation writes as4:

∀g ∈ H1
0 (Ω), −

∫
Ω
k0
−→
∇g ·

−→
∇V̂ D

j ∂Ω = zi

∫
Ω
g c0 V̂

D
i ∂Ω (29)

The set of eigenvectors V D
i forms a basis for the Dirichlet subspace H1

0 (Ω) ⊂ H1(Ω). They
are characterized by a null value on the boundaries, as shown in �gure (1.c).

4The test function g ∈ H1
0 (Ω) has a null value on the boundaries. The integral term

∫
Γ

g k
−→
∇V̂ D

i ·

−→n dΓ is

thus null.
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(c) Dirichlet eigenmodes

(b) Neuman eigenmodes

(a) Fourier eigenmodes

Figure 1: Classical modes for a simple 2D rectangular geometry

An adapted normalization5 enables to �x the magnitude of the modes, and leads to the
following orthogonality relations:

∀ (i, j) ∈ N?,


∫

Ω
V D
i c0 V

D
j ∂Ω = δij∫

Ω
k0
−→
∇V D

i ·

−→
∇V D

j dΩ = zDi δij

(30)

4.1.3 Non homogeneous problem: applying a gliding temperature

We recall the general problem: ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇ · (k0

−→
∇T ) + π

∀M ∈ Γ : k0
−→
∇T ·

−→n = ϕ+ h0(Tf − T )
(31)

We saw that the Fourier eigenmodes de�ned by Eq. (14) form a basis for a thermal problem

5It is the same as the one used for the Fourier eigenmodes (Eq. (19))
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characterized by homogeneous boundary conditions. In order to use the modal reduction with
those eigenmodes, we have to split the temperature T into two terms :

T = Tg + Td (32)

� The term Tg is called the gliding temperature, because it corresponds to the temperature
obtained without any consideration of the thermal inertia: ∀M ∈ Ω : 0 =

−→
∇ · (k0

−→
∇Tg) + π

∀M ∈ Γ : k0
−→
∇Tg ·−→n = ϕ+ h0(Tf − Tg)

(33)

Such a problem is simple: from the variational formulation Eq. (33):

−
∫

Ω
k0
−→
∇g ·

−→
∇Tg dΩ−

∫
Γ
g h0 Tg dΓ +

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ h0 Tf ) dΓ = 0 (34)

The discrete form is then:
ATg + U(t) = 0 (35)

leading to:
Tg = −A−1U(t) (36)

� The complementary variable Td is called the dynamic temperature. From Eqs. (31) and
(33), Td is solution of: ∀M ∈ Ω : c0

∂Td
∂t

=
−→
∇ · (k0

−→
∇Td)− c0

∂Tg
∂t

∀M ∈ Γ : k0
−→
∇Td ·

−→n = −h0 Td
(37)

Such a problem is homogeneous and it can be reduced with the Fourier basis.

Lastly the researched temperature �eld T is:

T =

∞∑
i=1

xi V
F
i + Tg (38)

The state modal problem remains decoupled. The gliding temperature Tg appears only if the
solicitations are time-dependent:

∀i ∈ N?,
dxi
dt

= zi xi −
∫

Ω
V F
i c0

dTg
dt

dΩ (39)

Several studies have used this technique, including buildings problems [24, 25, 26, 27].

However, the limit of this method is that the computed basis is applicable only for problems
in which the boundary conditions are �xed. From the second equation of (14), we can de�ne
the quantity γi such as:

γi =

−→
∇Vi ·−→n
Vi

=
−h0

k0
(40)

Every eigenvector is characterized by the same value of γi. Thus, all the dynamic thermal
�elds that can be rebuilt by this modal formulation will respect this constraint.
Such bases are not compatible with a thermal problem in which non linearities or time varia-
tions exist on the boundaries. Examples are numerous: time-dependent exchange coe�cient
h(t), thermal conductivity depending on the temperature k(T ), infrared radiations... That is
why other bases have been developed.
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4.2 Basis adapted to non linear problems

4.2.1 Branch modes

In order to overcome this limitation, a new basis is de�ned, whose boundary conditions are
not linked to the physical boundary conditions:{

∀M ∈ Ω ,
−→
∇ ·

(
k0
−→
∇V̂ B

i

)
= zBi c0 V̂

B
i

∀M ∈ Γ , k0
−→
∇V̂ B

i ·
−→n = −zBi ζ V̂ B

i

(41)

The main feature of this basis is that the eigenvalue zBi is present in the boundary condition.
This is the Steklov condition.
The quantity ζ [J.m−2K−1] is called Steklov parameter and it is a simple coe�cient which
grants the respect of the physical dimensions in the boundary condition equations. The value
of this coe�cient is obtained from the variational formulation of the eigenvalue problem (41).

−
∫

Ω
k0
−→
∇g ·

−→
∇V B

i dΩ = zi

(∫
Ω
c0 g V

B
i dΩ +

∫
Γ
ζ g V B

i dΓ

)
(42)

To balance the two terms linked to the eigenvalue, an appropriate choice of the Steklov
coe�cient ζ is given by:

ζ '

∫
Ω
c0 dΩ∫
Γ
dΓ

(43)

Using the associated scalar product:

< u, v >=

∫
Ω
u c0 v dΩ +

∫
Γ
u ζ v dΓ (44)

the normalization is done:

V B
i =

V̂ B
i(∫

Ω
V̂ B
i c0 V̂

B
i dΩ +

∫
Γ
V̂ B
i ζ V̂ B

i dΓ

)1/2
(45)

and we obtain the following orthogonality properties:

∀(i, j) ∈ N?,∫
Ω
V B
j c0 V

B
i dΩ +

∫
Γ
V B
i ζ V B

i dΓ = δij∫
Ω
k0
−→
∇V B

j ·

−→
∇ V B

i dΩ = zBi δij

(46)

It is possible to characterize the spatial evolution of each branch modes by de�ning a local-
ization coe�cient Cζi for each mode V B

i :

Cζi =

∫
Γ
V B
i ζ V B

i dΓ (47)

The evolution of this coe�cient with the mode number, for a simple rectangular geometry, is
presented in �gure 2. It shows that two families of branch modes exist:
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� Because of the orthogonality relation de�ned in Eq. (14), when Cζi is close to 1, the
considered mode is �at on the domain except near the border. Such modes are called
boundary modes. They do not appear in a classical Fourier basis, and allow the recon-
stitution of any boundary conditions.

� Other modes exist. Their spatial evolutions are located in the core of the domain. We
call them domain modes. Those modes are characterized by a weak value of cζi (less
than 0.3 for the example in �gure 2).

Figure 3.a presents some branch modes for a simple 2D rectangular geometry. This �gure
enables to clearly visualize these two families of branch modes.

With the branch modes, the orthogonality properties do not allow to obtain a decoupled
modal problem anymore:

∀j ∈ N?,
∞∑
i=1

(∫
Ω
V B
j c V B

i dΩ

)
dxi
dt

= −
∞∑
i=1

(∫
Ω
k
−→
∇V B

j ·

−→
∇V B

i dΩ +

∫
Γ
V B
j h V B

i dΓ

)
xi

+

∫
Ω
V B
j π dΩ +

∫
Γ
V B
j (hTe + ϕ)dΓ

(48)

This is the price to pay for using this basis. On the other hand, the branch modes form a
basis for any thermal problem, including those characterized by parameters that are functions
of time or temperature. It is demonstrated that the generated functional space is the Hilbert
space H1(Ω) and we have directly6:

T (M, t) =
∞∑
i=1

xi V
B
i (49)

Initiated by Neveu et al. [28], this basis has been applied to di�erent con�gurations: Quéméner
et al. [29] treated the case of a non-linear problem, with the existence of solidi�cation of a
molded part. Various applications were made for inverse problems by Videcoq et al. [30, 31,
32]. A generalization of Branch bases to advection-di�usion problem has been proposed by
Joly et al. [33], then used in the case of an inverse problem of identi�cation [34]. Finally La�ay
et al. [35, 36] proposed a sub-structuring technique, that allows the computation of branch
bases for di�erent subdomains, which are then coupled by a thermal contact resistance.

4.2.2 The Dirichlet-Steklov eigenmodes

Recently another way to reduce non linear problems with or without time-dependent param-
eters has been developed. It consists in using two bases:

� the Dirichlet basis previously presented (Eq. (27)),

� the Steklov basis7, which is de�ned by the following eigenvalue problem:{
∀M ∈ Ω ,

−→
∇ · (k0

−→
∇V̂ S

i ) = 0

∀M ∈ Γ , k0
−→
∇V̂ S

i ·
−→n = −zSi ζ V̂ S

i

(50)

6It is no longer necessary to use the gliding temperature �eld

7Steklov modes are rigorously de�ned only on the boundaries. In order to simplify the notation, we denote
here by abuse of language Steklov modes as their harmonic lifting in the domain (noted V̂ S

i )
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Figure 2: Evolution of the location coe�cient according to the branch mode number

Steklov modes correspond to stationary �elds obtained for a problem in which the im-
posed heat �ux density at the boundaries is proportional to the value of the mode at
any point on the border.

The union of these two bases {V D
i }i∈N

⊕
{V S

j }j∈N forms a Hilbert base of H1(Ω). We de�ne
the following scalar product:

< u, v >=

∫
Ω
k0
−→
∇u ·

−→
∇v dΩ + z0

∫
Γ
u ζ v dΓ (51)

where z0 is a constant parameter [s−1] which allows to respect the physical dimension of both
terms.

Using the following normalization:

V S
i =

V̂ DS
i(∫

Ω
k0
−→
∇V̂ DS

i ·

−→
∇V̂ DS

i dΩ + z0

∫
Γ
V̂ DS
i ζ V̂ DS

i dΓ

)1/2
(52)

we obtain Dirichlet and Steklov modes which are orthogonal with respect to this scalar product
(51):

∀X ,Y ∈ {D,S},∀ (i, j) ∈ N?,

< V̂ Xi , V̂
Y
j > =

∫
Ω
k0
−→
∇V̂ Xi ·

−→
∇V̂ Yj dΩ + z0

∫
Γ
V̂ Xi ζ V̂ Yj dΓ

= δXY δij

(53)
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Examples of Dirichlet-Steklov modes are compared to the Branch modes in Fig. 3. Steklov
modes correspond very well to boundary branch modes, whereas domain branch modes and
Dirichlet modes are similar only inside the domain. At the boundaries, domain branch modes
are not characterized by null values, unlike Dirichlet modes. Nevertheless the correspondence
between these two bases is obvious.

𝑉𝑉36𝑆𝑆𝑉𝑉19𝑆𝑆 𝑉𝑉50𝑆𝑆

𝑉𝑉4𝑆𝑆𝑉𝑉1𝑆𝑆𝑉𝑉0𝑆𝑆 𝑉𝑉0𝐷𝐷

𝑉𝑉4𝐷𝐷

𝑉𝑉8𝑆𝑆

𝑉𝑉2𝐷𝐷

(a) Branch eigenmodes

𝑉𝑉0𝐵𝐵 𝑉𝑉1𝐵𝐵 𝑉𝑉4𝐵𝐵 𝑉𝑉8𝐵𝐵 𝑉𝑉18𝐵𝐵

𝑉𝑉20𝐵𝐵 𝑉𝑉38𝐵𝐵 𝑉𝑉53𝐵𝐵 𝑉𝑉55𝐵𝐵𝑉𝑉40𝐵𝐵

(b) Dirichlet – Steklov eigenmodes

Figure 3: Comparison between the Branch basis {V B
i } and the Dirichlet-Steklov basis

{V D
i }

⊕
{V S

j }
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5 Basis reduction

Until now, no reduction has been made. Whatever the chosen basis, the state problem (Eq.
(39) or (48)) remains characterized by a dimension related to spatial discretization. The
second step of the AROMM method is to build a reduced base of n modes Ṽi(M) from the
complete base. We saw previously that the form of the reduced modal problem depends on
the chosen basis:

� For a basis associated with a linear thermal problem and with stationary parameters
(i.e. Fourier basis {V F

i }, Neumann basis {V N
i } or Dirichlet basis {V D

i }):

∀i ∈ {1, n} dxi
dt

= zi xi −
∫

Ω
Ṽi c0

dTg
dt

dΩ (54)

� For a basis adapted to more general problems (i.e. Branch basis {V B
i } or Dirichlet-

Steklov basis {V D
i }

⊕
{V S

j }):

∀j ∈ {1, n}
n∑
i=1

(∫
Ω
Ṽj c Ṽi dΩ

)
ẋi

= −
n∑
i=1

(∫
Ω
k
−→
∇Ṽj ·

−→
∇Ṽi dΩ +

∫
Γ
Ṽj h Ṽi dΓ

)
xi

+

∫
Ω
Ṽj π dΩ +

∫
Γ
Ṽj (h Te + ϕ) dΓ

(55)

Several reduction methods exist.

5.1 Truncation

The simplest idea is to take the most relevant modes from the complete base:

∀i ∈ {1, n} ∀j ∈ {1, N} , Ṽi = Vj (56)

5.1.1 Temporal Truncation

A �rst criterion leads to the truncation of Marshall [37]. In this method the modes with the
largest time constant are kept. Independent of any reference problem, this reduction tech-
nique has mostly been used for classical bases [38].

The advantage of this reduction is that it is immediate to use, since the Lanczos technique al-
lows to calculate the basis according to the order of the largest time constant. Thus, temporal
truncation can also be used as �rst-level reduction: instead of calculating the complete basis,
only a certain percentage of this basis is computed, from which it is possible to make a second
and more e�cient reduction. In the case of problems characterized by a very large number of
DOF, the possibility to compute a small part of the basis is of great interest, bacause of the
large calculation times needed for solving the eigenvalue problem and the di�culties of the
eigenvectors storage.

5.1.2 Energetic Truncation

This technique is used by Joly et al. [33]. From a set of known temperature �elds Tref (t),
the excitation states are obtained by a simple projection of Tref (t) on the complete basis
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according to the appropriate scalar product.

For example, in the case of the branch basis, orthogonal properties lead to:

∀j ∈ {1, n},∫
Ω
Tref c0 V

B
j dΩ +

∫
Γ
Tref ζ V

B
j dΓ

=

∫
Ω

n∑
i=1

(
xi V

B
i

)
c0 V

B
j dΩ +

∫
Γ

n∑
i=1

(
xi V

B
i

)
ζ V B

j dΓ

=
n∑
i=1

(∫
Ω
V B
i c0 V

B
j dΩ +

∫
Γ
V B
i ζ V B

j dΓ

)
xi

=
n∑
i=1

δijxi

= xj

(57)

For the Dirichlet-Steklov basis, the de�nition of the scalar product leads to:

∀X ,Y ∈ {D,S}, ∀j ∈ {1, n},∫
Ω
k0
−→
∇Tref ·

−→
∇V̂ Yj dΩ +

∫
Γ
Tref ζ V̂

Y
j dΓ

=

∫
Ω
k0
−→
∇

(
n∑
i=1

xi V̂
X
i

)
·

−→
∇V̂ Yj dΩ +

∫
Γ

(
n∑
i=1

xi V̂
X
i

)
ζ V̂ Yj dΓ

=

n∑
i=1

(∫
Ω
k0
−→
∇V̂ Xi ·

−→
∇V̂ Yj dΩ +

∫
Γ
V̂ Xi ζ V̂ Yj dΓ

)
xi

=

n∑
i=1

δXY δij xi

= xj

(58)

The knowledge of the excitation state of every mode of the complete basis enables to keep
only those with the largest state value. This technique generally leads to a more e�cient
reduction than the simple temporal truncation, but it has two disadvantages. First, the
performance of the reduction depends on the reference �elds. Second, the reference �elds
have to be computed, which might be di�cult. Here we �nd the same constraints as those
existing for the POD method. From the same discretized geometry it is generally possible
to perform simulations of a thermal problem simpler than the one studied, but which will
however trigger the characteristic modes.

5.2 Amalgamated base

The amalgam is a more elaborate technique. It retains the idea of classifying eigenmodes
according to their excitation states, but this time the modes that are discarded during the
truncation are added to the retained modes by simple linear combinations:

∀i ∈ {1, n} Ṽi = Vi,1 +

Ñi∑
p=2

αi,pVi,p ; 0 < |αi,p| < 1 (59)

In order to maintain the orthogonality properties of the basis, each mode is used only once:
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n∑
i=1

Ñi = N (60)

The distribution of the initial modes and the computation of the amalgam coe�cients αi,p
are carried out in a fast sequential procedure which depends only on the knowledge of the
excitation states. Set up by Oulefki [39] in the case of classical bases for which the decoupling
facilitates the determination of the reference states, this reduction technique has been widely
used for branch modes.
In general, the di�culty lies in �nding the excitation states of the complete basis. A �rst
rather simple solution [40, 41] is, as for energetic truncation, to use a set of temperature �elds
obtained by complete solution of a reference problem, which gives access to the excitation
states (Eq. (57) or (58)).
Other techniques have also been tested [29, 31, 35] in order to avoid computing the reference
thermal �elds. Since the excitation states are only needed to classify modes to set up the
amalgam procedure, these authors have built the associated complete modal problem, and
sought a simple estimate of the states of excitation: Using a branch basis and neglecting the
coupling between modes, the modal problem has been solved analytically and the excitation
states were readily obtained [29]. An improvement of this technique has been carried out
in the case of a rotating disc, for which only the coupling of a small number of modes was
considered [42].

6 Application to the inverse problems: Examples

The examples presented here concern an automotive brake system, which is a major safety
component. It undergoes, during its operating phase, many mechanical and thermal stresses,
which can lead to important damages: cracks, apparition of hot-judder, vapor locking, brake
fade, etc.
Because thermal solicitations are rarely known (especially the part of the heat �ux received
by the pad and by the disc), an inverse technique is used. In order to respect the geometry of
the system, the models used in the inverse process are numerical, and characterized by very
�ne meshes. As computing time and memory problems appear very quickly, reduced models
are employed.

6.1 Estimation of heat �ux received by a rotating brake disc

A brake disc in rotation with variable rotation frequency ω(t) is considered (Fig. 4). During
the braking phase, the disc receives a time-dependent heat �ux on the zone of friction with
the brake pads Ω1. The �ux density ϕ[W.m−2] dissipated by friction is not uniform but varies
linearly with the velocity and thus with the radius.
The space discretization using P1 �nite elements leads to a number of DOF N = 9860 for the
following matrix formulation:

C
dT

dt
= [K+ ωu(t)U+ hu(t)H]T+ ϕuU (61)

The goal consists in identifying ϕu(t) in real time, from a local infrared measurement on the
disc (point A).
Concerning the direct simulation, the computing time is signi�cant (equal to 2160 s on a
simple laptop), because the transport term involves small computation time-steps. Figure 5
illustrates this phenomenon.
Such simulation time is an obstacle for inverse applications where the need for real-time
response is important. To avoid prohibitive time, a reduced model is built. It is obtained by
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Time (s)

ωu
hu
ϕu

(a) Geometry and sollicitations (b) Scenario studied

h(t)

Γ1

ϕ(t)

Figure 4: Physical problem

Figure 5: Temperature �elds at di�erent times

the AROMM method with branch eigenmodes (Fig. 6.a). The reference scenario used for the
amalgam procedure (Fig. 6.b) is obviously di�erent from the one used for the identi�cation
(Fig. 4.b). With a reduced order n = 15, the direct simulation requires less than 10s, with
satisfying results (Fig. 7).
By integrating such reduced model in an inverse approach, it is possible to identify the heat
�ux ϕ in quasi real time. The inverse algorithm is based on the adjoint method applied on
sliding time windows (Fig. 8).
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Figure 6: Reduced model

Figure 7: Using the reduced model ñ = 15 in direct simulation

Figure 8: Identi�cation results
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6.2 Spatio-temporal identi�cation of a heat �ux density �eld received by

a brake pad

The application relates to the identi�cation of the heat �ux received by a brake pad in a
braking situation, for which the mechanical deformation and the phenomena of tear and wear
cause the appearance of hot spots that one seeks to locate.
We consider a brake pad for which the complexity of the geometry is respected (Fig. 9.a).
It is composed of two materials: the brake lining and its metallic support. This brake pad
undergoes three types of boundary conditions (Fig. 9.b).

Figure 9: Geometry of the pad and its discretization

6.2.1 Parametrization of the heat �ux density

A �rst branch base V (ϕ) is used in order to parametrize the heat �ux density (Fig. 10):

ϕ(x, y, t) =
n(ϕ)∑
k=1

x̃
(ϕ)
k (t) Ṽ

(ϕ)
k (x, y) (62)

Figure 10: Flux basis

The discretization of the heat equation (Eq. (3)) leads to:
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CṪ = (K+H)T+

n(ϕ)∑
k=1

WṼ
(ϕ)
k x̃

(ϕ)
k (63)

where Ṽ
(ϕ)
k [Nmesh] is the extension on the domain Ω of each eigenvector Ṽ

(ϕ)
k computed on

the boundary Γ1, and where the matrix W [Nmesh × Nmesh] corresponds to the integration
of the interpolations functions de�ned on the border Γ1 and extended to the domain Ω.
This can be written compactly:

CṪ = (K+H)T+WṼ
(ϕ)

X̃
(ϕ)

(64)

where Ṽ
(ϕ)

is a matrix of dimension [Nmesh × n(ϕ)] which gathers all the �ux modes Ṽ
(ϕ)
k

[Nmesh] used, and X̃
(ϕ)

is the vector of the corresponding states of dimension [n(ϕ)].

6.2.2 Reduced problem

A second branch base V T is used for the temperature �eld (Fig. 11)

Figure 11: Temperature basis

The reduced modal expression of the thermal problem de�ned by equation (10) is then:

L
˙̃
X(T) = MX̃

(T)
+DX̃

(ϕ)
(65)

with D = Ṽ
(T)t

W Ṽ
(ϕ)

6.2.3 Spatio-temporal identi�cation

We thus have a temperature model characterized by a few dozens of excitation states of
temperature xT (instead of 67, 353 degrees of freedom of the initial mesh), to identify a few
dozens of excitation states of �ux xϕ, instead of the 5, 945 degrees of freedom of the surface
Γ1. The developed technique uses an iterative method of conjugate gradient descent, in which
the gradient is estimated by the adjoint method.
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The obtained results (Figures 12 and 13) are satisfactory. It can be noted that no speci�c
regularization technique is used in this study (Tikhonov for example). Indeed, in addition to
the natural regularization due to a whole time-domain approach and an iterative method, an
additional regularization appears, induced by the two reductions (one for the thermal problem
and another for the heat �ux parametrization).

;

Figure 12: Identi�cation results along a segment or versus time
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Figure 13: Space-time identi�cation
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