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Abstract. Introduction to the inverse approach is made starting by simple examples (solution 
of a linear system of equations, with noised right-hand member, case of a slab, in steady state 
regime, with either heat flux or thermal conductivity estimation). The inverse terminology, the 
pitfalls of inversion (noise amplification effect), as well as the corresponding methodological 
approach are highlighted. The objective is not to solve these problems but to highlight the main 
crucial points in inverse measurement problems. Other lectures (L3 & L7 to L10) will be 
devoted to show how to solve them. 
 
Introduction 
 

Inverse problems are part of our daily practice, even if we do not know that they are inverse 
problems. We consider here a scientific field (heat transfer, mechanical or chemical 
engineering, physics...) where a quantitative model is available, that is a mathematical 
procedure which is able to simulate, with a good enough accuracy, the phenomena at stake.  
The inverse use of this model gives rise to an inverse problem. Instead of introducing the 
different notions associated to such problems, which will be progressively dealt with in the 
following lectures of this advanced school, we will present examples that correspond to the 
inverse use of a model, as well as the specific problems that appear concomitantly. These 
examples will correspond to exact matching between measurements (noted y or Y further on) 

and model outputs (noted ymo or T or ∆T further on). The term “exact matching” means that 
inversion is made through solving an equation where both model outputs and measurements 
are equal, which is only possible when the number of unknowns is equal to the number of 
measurements. Consequently, the least square sum is not only minimum but equal to zero.  
 
 

2. Example 1: square system of linear equations 
 

Let us suppose that we have a linear model that allows to get m output values 

mmomomo y...,,y,y 21  for any values of the m input values mx...,,x,x 21 . Note that we assume 

here that both numbers of input and output values are the same and that the output values are 
subscripted by the index “mo” to remind us that it is derived from a model. It is very convenient 
to use here column vectors to represent this linear relationship under the form: 
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xSy =mo     (1.1) 

 

where moy and x are both (m, 1) matrices (column vectors) composed of the moy ’s and of the 

x’s values and S a square (m, m) matrix, which is called a « sensitivity matrix » in the inverse 
problem terminology. 
 

In the direct problem input x is known and moy , the output of the model, is calculated. 

 

Let us consider the following example that corresponds to m = 2, with: 
 









==








==









−
−

=
36

9

1

3

8139

2110
exact

mo

exact xSyxxS  (1.2) 

 

We have supposed here that, in the given problem, we know the exact value 
exactx of the input 

vector x. 
 

Conversely, if moy  is known, solution of system (1.2), or inversion of matrix S, provides the 

true value of the input: 
 

 mo
exact ySx 1−=      (1.3) 

 

We have therefore solved the inverse problem using exact data x. 
 

Let us now assume that the output, that is the data, corresponds to some measurements of 

moy  which are corrupted by an additive noise [ ]T
.. 3010 −=ε  (superscript T designates the 

transpose of a matrix). Each component of this noise is about 1% of each component of the 

exact output moy : 
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The natural idea for retrieving an approximate solution of the inverse problem is to replace the 

exact model output moy  by its measured value y in (1.4), or to solve linear system (1.1) 

yxS =  with this noised right-hand member: 
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By inverting S, it is found the value of the input vector as:      
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In this relation, xe  is the error on the x̂ estimate relatively to the exact value. 
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This means that an error of 53 % has been made for 1x  (1.40 instead of 3) and of 77% for 2x

(0.233 instead of 1). This phenomenon is illustrated in figure 1: considering two very different 

values of x from 
exactx , yields approximately to the same values for y. Let us note that the 

determinant of matrix S is 9, thus nonzero value. 
 

Let us note that, in this particular case, this solution x̂  of system yxS =  is also an ordinary 

least squares solution of equation (1.1) with noisy data y. 
 

In order to analyse the possibly "pathological" character of the solution of yxS = , two global 

criteria, the amplification coefficients of the absolute and relative errors, ak  and rk , 

respectively, can be used. Their values are calculated using the Euclidian norm L2: 
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Figure 1 shows the amplification effect of the measurement noise in the above example. 
 
 

 
 

Figure 1 – Effect of the measurement error on parameter estimation through inverse mapping  

 
Criteria (1.7), which measure the amplification effect of the measurement noise ε allow to 

quantify the unstable character of the solution. In practice, calculations of these criteria, which 

require a prior knowledge of the exact value exactx  of the unknown, is not possible. In order to 
analyse this stability problem, a condition number of matrix S shall be introduced. 
 
Remark 1 
 

In figure 1, the exact exactx  and estimated x̂  values of parameter vector x are shown in 
the left-hand side, in the two-dimension vector space of the parameters X (also called 
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input space), where an orthonormal basis that corresponds to the components )( 21 x,x  

of these vectors has been chosen. In the right-hand side, the output moy  of the model, 

and measurements y  are shown in the observation space Y where a corresponding 

orthonormal coordinates system )( 21 y,y  has been selected. The two norms present in 

the definition of ak  are the lengths of the vectors of the estimation error 
exactˆ xxex −=

and of the measurement noise moyyε −= . The other extra norms present in the 

definition of rk  are the lengths of the vectors representing the exact values 
exactx  (model 

input) and moy  (model output). 
 

Remark 2 
 

The norms used in (1.7) are not necessarily the same in spaces X and Y.  For example, 

coordinates )( 21 x,x  can be expressed in W.m-2, if the unknowns are fluxes and 

coordinates )( 21 y,y  can be temperatures (Kelvin). However, in order to define such 

norms in each space, 1x and 2x should have the same units as well as 1y and 2y . If it is 

not the case a scaling has to be implemented in both domains. 
 

Remark 3 
 

Coefficient rk does not depend on the physical dimensions in X and Y: it explains the 

transformation of the noise/signal ratio mo/ yε  into a relative estimation error

exact/ xex . The inverse process, where one starts from the measurement domain Y 

to get a value of the input in the parameter domain X, corresponds to the inverse linear 

mapping 1−S . Passage from Y space into X space is associated with a high amplification 

of the error: this problem is therefore ill-conditioned. 
 

Remark 4 
 

The high value 65.8)( =εrk
 

of the relative amplification coefficient is not the highest 

possible here, things can become even worse. This maximum value of this coefficient 
is the condition number (see lecture L2) of S, that can be reached for a specific value of 
noise ε : 
 

958)(cond)( =≤ Sεrk     (1.8) 

 
3. Example 2: Different inverse problems for steady state 1D heat transfer through a wall 
 
3.1 Case of exact sensor locations 
 
The problem of one-dimension heat transfer through a homogeneous plane wall is considered. 

Exact temperature eT  at the rear face (x = e) is assumed to be known while a sensor located 

at a depth sx  inside the wall allows the measurement of a temperature y. 
 

Using those two information and the knowledge of the exact values of the thermal conductivity 

λ as well as the thickness e of the wall, three quantities can be seek (see figure 2a): 
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- the temperature 0T , of the front face (x = 0), 

- the internal temperature distribution, 
- the heat flux density q that flows through the wall.  

 

One temperature is observed:  
 

), ,  ; ( 01 λη TqxT ss =       (1.9) 
 

However, its measurement y by the sensor is supposed to be corrupted by an additive noise ε 

of zero mean and of standard deviation σ: 
  

ε+= sTy        (1.10) 
 

The observed temperature eT  can be considered as a particular output of the model 1η  of 

temperature distribution, at location x = e with: 
 

λλη /xqTTqxTx −≡= 001 ), , ;(      (1.11) 

 
In the parameter estimation terminology: 
 

- xT is the dependent or output variable, 

- x is the explanatory or independent variable,  

- 0 , Tq  and λ  are the parameters,  

- and function )  ; (1 ....η  is the model structure. 
 

Parameters 0 , Tq  have a special status: they are also called input variables (or solicitations), 

because if they are both equal to zero, the wall temperature field is equal to zero. They 
correspond respectively to the right-hand members of the two boundary conditions of the 
second and first kinds for the heat equation whose model (1.11) is the solution of what is called 
a direct problem: 
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We will see later on that this direct problem, whose solution (1.11) is the internal temperature 
field in between the two boundaries (x = 0 and x = e), is a well-posed problem. 
The wall conductivity λ  is called a structural parameter: if its value changes, the material 

system also changes. 
 

As a consequence of model (1.11), the known value of the rear face temperature verifies: 
 

λ/eqTTe −= 0      (1.13) 
 

Elimination of q between the two equations (1.11) and (1.13) yields a second model 2η  for the 

output of the sensor located at sx : 
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Inversion of this second model is straightforward, replacing sT  by its measured value y: 
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The hat superscript α̂  over a α quantity is either an estimator of α (that is a random variable 

whose realization is an approximate value of the exact value of α) or an estimated (observed) 
value. 
  

This allows the calculation of the estimation error for 0T , 000 TT̂eT −= , which is a random 

variable proportional to ε, of zero mean (symbol E (.) is used here for the mathematical 

expectancy of a random variable), with its own standard deviation 0σ : 
 

)1(da0 )(E)1( 000
**
sTsT x/nex/e −==−= σσε   (1.14) 

 

 
 

Figure 2a – Estimation of temperature/flux in a wall 
Noised temperature measurement 
Exact sensor location 

 

A direct consequence of (1.14) is that estimation of 0T  is unbiased, 00 )(E TT̂ = , and its 

standard deviation )1(00
*
sT x/ −== σσσ  is an increasing function of the relative depth *

sx  of 

the sensor inside the wall. 
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An obvious property of the linear extrapolation related to the straight line model (1.12) can be 
highlighted: 
 

- error on 0T , measured by its standard deviation 0σ , becomes infinite if the sensor 

is located at x = e (rear face). It reaches a minimal value for a measurement at  the 
x = 0 face;  

 

The estimated temperature distribution that derives from 0T̂ , also called recalculated 

distribution, is given by ),,( 02 eTT̂e/xη : 
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The random error xxTx TT̂e −=  for temperature xT  at any depth x, can be assessed by the 

same type of derivation, as well as its standard deviation Txσ :  
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1
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wit

s

TxTx
x

x
KhKKe

−
=== σσε   (1.16) 

 
Two regions can be distinguished inside the wall (see figure 2a):  
 

- the external layer, between sx and e, that is the layer whose points 2x  are located in 

between boundaries where temperature boundary conditions (1rst kind) are either 

approximately (y) or exactly ( eT ) known: going from y to xT̂ corresponds to a  graphical 

interpolation with a reduction of the estimation error with respect to the noise ( 1≤K ). 

The inverse temperature xT  estimation problem is well-posed in this region. 

 

- layer in between 0 et cx , with external points 1x , where the same operation consists 

in making an extrapolation. This corresponds therefore to an amplification of the 
measurement noise ( 1≥K ) : the inverse problem of estimation of temperature xT  is  ill-

posed in this region.  
 
Remark 5: 
 

This partition of the space domain into two zones, an internal one located between limits 
where noised boundary conditions are available, and an external one, beyond these 
limits, leads to ill-posed problems as soon as the temperature field, or its derivative, is 
looked for in the external zone. This is true not only in this 1D steady state type of diffusion 
problem, but also in transient regime, whatever the space dimension (1 to 3D) of the 
geometrical domain. 

 

An estimation q̂  of heat flux q can be given here, as well as an assessment of its error qe  and 

of its standard deviation qσ  (a statistical quantification of what is called « absolute » error) and 
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of its relative standard deviation qσ  /q (a statistical quantification of what is called « absolute » 

error):    
 

SNRx
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  (1.16a, b, c, d) 
 
Let us note that the relative standard deviation of the estimated flux (1.16d) depends on the 

temperature signal/noise ratio σ)/( 0 eTTSNR −=  and on the relative depth 
*
sx  of the 

sensor. 
 
We consider a numerical example here. The wall is 0.2 m thick with a thermal conductivity 
equal to 1 W.m-1.K-1, with a 30°C temperature difference between its faces and a 0.3 °C value 

for the standard deviation of the temperature noise for a measurement in m180.xs = :  

 

q = λ T
0

− Te

e
= 1

30

0.2
= 150 W.m

−2
   and   1003030)/( 0 ==−= ./TTSNR e σ     (1.17) 

 

This yields a 10 % error (relative standard deviation) for q̂ (see equation 1.16d). A mid-slab 

measurement ( m10.xs = ) would have given a 2 % error for this flux: the location of the 

measurement is therefore a key parameter. 
 
 

3.2 Case of imprecise sensor locations and errors for parameters "assumed to be 
known" 
 
Measurement noise is not the only cause of the estimation error: in numerous practical 
experimental situations, where a sensor has to be embedded in a material, the precise location 
of its active element (the hot junction of a thermocouple, for example) is not precisely known. 
So a different type of error has to be taken care of. 
 
Let us assume that, in the above example, the objective is the same (estimation of the front 

face temperature 0T , of the inner temperature distribution xT  and of the heat flux q), but the 

sensor which was thought to be positioned at a nominal location 
nom
sx  is actually located at 

depth sx , with: 

 

δ+= s
nom
s xx      (1.18) 

 

see figure 2b. So, the noised output y of the sensor stems from the error δ in its depth, see 
figure 2b: 
 

εδεεηεη +−=+=+= )/e(with),() ,( 00202 ee
nom
ses TT''TT,e/xTT,e/xy

 (1.19) 
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Figure 2b - Estimation of temperature/flux in a wall 
      Noised temperature measurement 
      Noised sensor location 

 
 

If one assumes here that this position error δ is also a random variable, which is independent 

of temperature noise ε,  of zero mean ( 0)(E =δ  ) and of standard deviation posσ , we find the 

same type of error as in section 3.1, simply replacing σ by a standard deviation 'σ : 

 

( ) ( ) pospos
2
pos

222
pos

2

0
22 with1e/)()( σσσσεσ /eRR/SNRTT'var' e =+=−+==

(1.20) 
 
Contribution in 'σ  of this position error may become important as well as in all the standard 

deviations of the subsequent estimation errors ( 0Tσ , Txσ  an qσ ) considered in section 3.1, 

as soon as the signal/position error posR  ratio becomes low with respect to the 

signal/temperature noise ratio SNR .  

 
Let us go back to the numerical application (1.17), with the additional assumption of a position 
error of standard deviation 2 mm. These two ratios become:  
 

1002200pospos === //eR σ  and 1003030)/( ==−= ./TTSNR ec σ     (1.21) 
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So, in this case, the presence of the position error is equivalent to a 41 % increase of the 

temperature measurement noise ( 2=σσ /'  here). The consequence would be a 14.1 % 

error for the estimated flux (for m180.xs = ). 

 
This problem of error in the dependent variable in parameter estimation problems can be 
solved using total least squares [1, 2] or Bayesian estimation techniques. The interested reader 
can also refer to [3, 4, 5]. 
 

Let us note that this type of error belongs to a broader class of errors not directly linked to the 
measurement noise: it concerns the 'parameters supposed to be known' (but not estimated 
generally) in a parameter estimation problem.  
 
Such a problem arises if, in the preceding example, thermal conductivity λ  is not precisely 

known. We can assume than a 'nominal' value 
nomλ  is known, but it differs from the exact value 

exactλ by an error λe : 

 

λλλ eexactnom +=      (1.22) 

 
If we refer to the derivations made in section 3.2, this conductivity error will not have any 

additional effect on the errors on 0T  and xT . However, estimation (1.16) of flux q has to be 

revisited: 
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In the case of a small relative error 
exact/e λλ for the conductivity and for large signal over noise 

ratio SNR , the preceding equation can be linearized, which yields the relative error exact
q q/e

for the estimated flux: 
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To go further on, it is necessary to assume that 
exactλ is a random variable of mean equal to 

nomλ and of standard deviation λσ . Taking the variance of equation (1.21b) yields: 
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If we consider the case given by (1.17) in section 3.1, with 0pos =R  (no position error, with 

m180.xs = ) , and an error of 10 % for the conductivity, that is λe  of zero mean around 
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nomλ =1 W.m-1.K-1, with a standard deviation λσ = 0.1 W.m-1.K-1) the error qσ  /qexact becomes 

equal to 14.1 % instead of 10 % for an exact conductivity. This error caused by the supposed 
to be known conductivity can even become dominant error if the sensor is better located (

m100.xs = ).  

 
The interested reader can refer to lecture L3 in this school to gain a deeper insight onto the 
effects of the errors on the parameters that can not be estimated thanks to temperature 
measurements and that are 'supposed to be known' in thermophysical characterization 
problems. 
 

4. Example 3: Inverse problem for unsteady state 1D heat transfer through a wall 

4.1 Presentation of the direct problem: 

 

We consider a semi-infinite 1D material with constant thermal properties (λ = 43 W.m-1.K-1, a 
= 1,18.10-5 m2.s-1) submitted to a heat flux depending on time. We can compute the 
temperature for several depths in the material (z = 0, 1, 1.5, 5, 10 mm) by a direct calculation 
(Finite Element Method, thermal quadrupoles, analytical solution).  
 

 
 

Figure 3a - Heat flux applied to the semi-infinite medium, for several temperature sensor positions 
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Figure 3b - Corresponding temperature responses for several positions 

 

4.2 Deconvolution procedure, description: 
 
The system is modelled by a linear system subjected to a prescribed heat flux Q (z = 0, t)=Q 
(t) leading to the temperature rise T (z, t). The linear system theory allows to write the 
temperature T (z, t) as the convolution of Q (t) with the impulse response h(z, t) of the system, 
(i.e. the material temperature response to a delta function, that is a Dirac distribution, of power 
density applied to the surface). We assume that the initial temperature distribution in the 
material (at t = 0) is uniform.  
 
 

 

 

 

Figure 4 - Linear System Figure 5 - Impulse response in the bulk 

 
The temperature response T at time t and depth z is: 
  

 τττ d)-()()0()(*)()0()(
0

thQtz,TthtQtz,Ttz,T
t

+==+==                (1.24) 

 
The impulse response h(z, t) of the system is the first time derivative of its step response u(z,t). 
So, we approximate (1.24) by finite differences which leads to the expression of the 
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temperature at each time step F in matrix form: where X is a triangular lower square matrix (of 

order F) assembled with the components ( , ) ( , ) ( , 1)u z F u z F u z F∆ = − −  [6]:   

  

 

( ,1) ( ,1) 0 0 ( 0,1)

( , 2) ( , 2) ( ,1) 0 ( 0, 2)

( ,3) ( , 2) . . 0
 . 

.

.
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T z u z Q z

T z u z u z Q z

u z u z
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     ∆ ∆
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∆ ∆ ∆ − ∆ =     

� � �

� � �

⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋱ ⋱ ⋮ ⋮

� �

          (1.25) 

  
 QXT .=Δ                                                                  (1.26) 

 
In order to simulate experimental data, a noise is added to the calculated values as: 
 

Y = ∆T + ε                                                             (1.27) 
 

Y is the experimental data, ∆T is the output of model (1.26) and ε is a zero mean Gaussian 
noise with a constant standard deviation of 0.1 K. All three preceding quantities are written 
here in a column-vector form of size (F x 1). The deconvolution procedure consists in inverting 
Eq. (1.26), i.e. expressing surface heat fluxes with measured surface heating:  
 

 YXQ 1−=                                                          (1.28) 

 
In the case of the deconvolution from surface temperature (z = 0), the inverse problem is stable 
and the inversion of matrix X does not cause any problem (see Fig. 6a).  
 

  

Figure 6a – Estimated heat flux, starting from 
noisy measurements at z = 0 

Figure 6b – Estimated heat flux, starting from 
noisy measurements at z = 1 mm 
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Figure 6c - Estimated heat flux, starting from noisy measurements at z = 1.5 mm 

 
However, in the case of the deconvolution of the temperature measured by a buried sensor (z 
>0), the inverse problem becomes difficult to solve with a good precision because the 
conditioning of X gets wrong. The deeper the sensor is located, the more unstable the problem 
becomes. Clearly, it means that matrix X becomes difficult to invert because of the presence 
of very small coefficients (in absolute value) in its diagonal: the result does not respect the 
stability criterion because the noise in Y is amplified. In figure 6b the heat flux estimated with 
the temperature at z = 1 mm is plotted. The inversion is possible, but the estimated heat flux 
is very noisy. The heat flux estimated using the temperature at z = 1.5 mm (see Fig. 6c), is too 
noisy to be exploited: a regularization procedure is needed to find a more stable “quasi 
solution”.  

4.3 Regularization procedure  

 

The solution vector Q̂ , is very sensitive to measurement errors contained in the vector of 

temperature measurements Y. In order to obtain a stable solution, we use a regularization 
procedure. For example, we can use the Tikhonov regularization method [7]. The regularized 
solution becomes: 
                                           

YXRRXXQ ttt
reg

ˆ 1-)( γ+=
                                                

(1.29) 

 

- regQ̂  is the regularized solution (an estimation of Q)  

- γ is the regularization parameter  
- R is the regularization matrix depending on the type of information that we want to impose. 

In our case, we want a solution with a minimal norm of the solution (0 order) ˆ
regQ , so we will 

take R = Id.  An optimal value of the regularization parameter can be found using the “L curve” 
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technique [8]. This type of representation allows to choose the best compromise - which is 
situated at the bending point of the ‘L-curve’ - between a stable solution, with a low value of 

regQ̂R  and an accurate solution, with low residuals regQ̂XY − . Another possibility is to 

use the “discrepancy principle”, that is to choose γ such as the root mean square of the 
residuals gets the same order of magnitude as the measurement noise, that is 

σmˆ
reg ≈− QXY , m being the number of measurement times. 

 
Considering the case of the temperature deconvolution at z = 1.5mm (with noise): 
  

- For low values of γ (Fig. 7a.), the solution is unstable with low residuals 

- For strong values of γ (Fig. 7b.), the solution is stable but departs from the exact 
solution.  

- For the best compromise of the γ value (Fig. 8) the heat flux is stable and can be 
used.  

 

  

Figure 7a - Heat flux estimation with a low γ Figure 7b - Heat flux estimation with a large γ. 

 



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 Lecture 1. Getting started – page 16 / 17 

 

Figure 8 - Heat flux estimation with the best compromise of γ=5.10-13  K2.m4.W-2. 

 
One can note that the value γ depends on the level of the noise, the time resolution and the 
depth of the measurement.  
 
 

5. Conclusions 
 

The first example presented in this short lecture has been used to introduce the notion of an 
ill-posed problem: under certain circumstances, a small error in the right-hand member of a 
linear system of equations, which can correspond to noised measurements, can yield a very 
large error in the solution.  
 

Study of the condition number of the corresponding matrix allows to assess the severity of this 
effect. The reader can refer here to the Singular Value Decomposition of this matrix, on which 
the condition number relies (see further lectures). 
  
In the second example, the inverse 1D steady state input problem has been considered. The 
very important effect of the location of the temperature sensor on the estimation of the 
temperature distribution and of the flux through a wall has been highlighted. It has been shown 
that the temperature noise is not the unique source of error in the estimates. 
 
Errors on the location of the sensor, as well as more generally the effect of the parameters 
'supposed to be known', have also to be studied with great care in order to get reliable 
estimations. 
 
In the third example, the temperature of an “in depth” measurement can be used for a heat flux 
estimation (an inverse problem of function estimation) depending on time. With a regularization 
procedure, a quasi solution can be obtained using a regularization parameter depending on 
the depth of the measurement, the noise, and the time resolution. One can note that the 
transfer function of the material can be modelled, computed or measured. 
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