

École Nationale Nantes Atlantique Vétérinaire, Agroalimentaire et de l'Alimentation

Etude numérique de la congélation assistée par micro-ondes

Société Française de Thermique

<u>Mathieu SADOT</u> Olivier ROUAUD Sebastien CURET Michel HAVET

4 Novembre 2016

Etude numérique de la congélation assistée par micro-ondes

Sommaire :

*Introduction

*Modèle

*Résultats numériques

*Partie expérimentale

*Conclusion

CONTEXTE

La <u>qualité de congélation</u> est meilleure pour de petits cristaux de glaces obtenus par des <u>procédés</u> de congélation <u>rapide</u>, donc <u>coûteux</u>.

Des études récentes^{1,2} montrent que le procédé de congélation peut fournir une <u>qualité de produit supérieure</u> avec l'<u>assistance de pulses d'ondes électromagnétiques</u>.

Microstructure de viande de porc pour un produit ¹: **A**) frais ;

B) congelé par jet d'air (2 m.s⁻¹, -40°C);

C) congelé avec azote liquide ;

D) congelé avec azote liquide et assistance de pulse d'ondes radios. Anese et al. (2012).

¹ ANESE, M., MANZOCCO, L., PANOZZO, A., BERALDO, P., FOSCHIA, M., NICOLI, M.C., 2012. EFFECT OF RADIOFREQUENCY ASSISTED FREEZING ON MEAT MICROSTRUCTURE AND QUALITY. FOOD RES. INT. 46, 50–54. ² XANTHAKIS, E., LE-BAIL, A., RAMASWAMY, H., 2014. DEVELOPMENT OF AN INNOVATIVE MICROWAVE ASSISTED FOOD FREEZING PROCESS. INNOV. FOOD SCI. EMERG. TECHNOL. 26, 176–181

CONTEXTE

Deux hypothèses sont envisagées:

- Rupture des liaisons H due à la rotation des molécules d'eau induite par les micro-ondes ³.
- Fusion partielle des cristaux due aux oscillations de température puis cristallisation secondaire².

² Xanthakis, E., Le-Bail, A., Ramaswamy, H., 2014. Development of an innovative microwave assisted food freezing process. Innov. Food Sci. Emerg. Technol. 26, 176–181. ³ Hanyu, Y., Ichikawa, M., Matsumoto, G., 1992. An improved cryofixation method - cryoquenching of small tissue blocks during microwave irradiation. J. Microsc. 165, 255–271.

CONTEXTE

Deux hypothèses sont envisagées:

- Rupture des liaisons H due à la rotation des molécules d'eau induite par les micro-ondes ³.
- Fusion partielle des cristaux due aux oscillations de température puis cristallisation secondaire².

² XANTHAKIS, E., LE-BAIL, A., RAMASWAMY, H., 2014. DEVELOPMENT OF AN INNOVATIVE MICROWAVE ASSISTED FOOD FREEZING PROCESS. INNOV. FOOD SCI. EMERG. TECHNOL. 26, 176–181. ³ HANYU, Y., ICHIKAWA, M., MATSUMOTO, G., 1992. AN IMPROVED CRYOFIXATION METHOD - CRYOQUENCHING OF SMALL TISSUE BLOCKS DURING MICROWAVE IRRADIATION. J. MICROSC. 165, 255–271.

CONTEXTE

Pour comprendre et modéliser le phénomène le projet Européen FREEZEWAVE a été créé.

4 partenaires

Objectif:

Dimensionner un prototype à échelle industrielle.

http://freezewave.eu

7

Modèle

Géométrie et conditions aux limites:

Hypothèses du modèle :

- Pas de variation de volume
- Pas de transfert de matière
- L'eau contenue dans le produit congèle sous forme de cristaux de glace sphériques de même rayon et uniformément répartis
- Propriétés thermophysiques et diélectriques constantes dans les phases congelée et décongelée
- Propriétés thermophysiques et diélectriques dépendantes de la fraction d'eau libre congelée lors du changement de phase

Equation de la chaleur :

$$\frac{\partial H}{\partial T}\frac{\partial T}{\partial t}\rho - \nabla \lambda \nabla T = Q_e$$

$$Q_e = \frac{1}{2} \omega \varepsilon_0 \varepsilon_r^{\prime\prime} |E|^2$$

 $H = f(x_g)$

Avec $\boldsymbol{\omega}$ la pulsation, $\boldsymbol{\epsilon}_0$ la permittivité du vide, $\boldsymbol{\epsilon}_r$ " le facteur de perte diélectrique relatif, \boldsymbol{E} le champ électrique local, \boldsymbol{x}_g la fraction massique de glace et \mathbf{T}_{cc} la température de congélation commençante.

Fraction de glace et Rayon des cristaux :

$$x_g = \frac{m_g}{m_t} = \frac{4 \cdot \pi}{3} r(T)^3 N \frac{\rho_g}{V_t \cdot \rho_t}$$

Avec $\mathbf{m_g}$ et $\mathbf{m_t}$ les masses de glace et d'échantillon, \mathbf{N} le nombre de cristaux de glace, $\mathbf{p_g}$ et $\mathbf{p_t}$ les masses volumiques de glace et d'échantillon et $\mathbf{V_t}$ le volume de l'échantillon.

Avec
$$r(T) = \left(1 + \frac{a}{T - T_{cc} - a}\right) \cdot r_{fin}$$

Avec a une constante spécifique au système.

Rayon et fraction de glace en fonction de la température:

Société Française de Thermique Fraction de glace

Propriétés diélectriques et thermophysiques en fonction de la température:

|4

Résultats numériques

Validation du modèle :

Thermique + changement de phase :

Evolution de la température en fonction du temps en 1D lors d'une congélation cryogénique sur un gel de tylose de 2 cm d'épaisseur.

⁴ROUAUD, O., LE BAIL, A., DE PELLEGRIN, R., 2013. TRANSFERT DE CHALEUR ET DE MASSE LORS DE LA CONGÉLATION DE PRODUITS NON EMBALLÉS. REV. GÉNÉRALE DU FROID DU COND. L'AIR 1137, 42–47.

Validation du modèle : Micro-ondes + thermique :

Répartition de la température dans un gel de tylose en fonction de la profondeur après 14 s traitement micro-ondes

⁵ CURET, S., 2008. TRAITEMENTS MICRO-ONDES ET TRANSFERTS DE CHALEUR EN MILIEU MULTIPHASIQUE. THÈSE DE L'UNIVERSITÉ DE NANTES.

Stratégie :

Puissance moyenne constante, Duty ratio différents :

Puissance micro-ondes pour un apport en continu et pulsé à 10%, 20% et 40% d'une période de 30 s. Etude de l'influence de la durée des pulses à apport d'énergie égal sur la période.

Résultats

Evolution de la température :

Evolution de température en surfaces supérieure (3 cm), milieu (1,5 cm) et inférieure (0 cm) pour des micro-ondes pulsées à 10% de la durée de la période.

Evolution de la température :

Zoom sur l'évolution de température (en surface inférieure) pour des micro-ondes pulsées (10% de la période).

Effets de la diminution des propriétés diélectriques:

*Moins de réflexion à l'interface air/produit

 $FR \approx \left(\frac{\sqrt{\varepsilon_r'} - 1}{\sqrt{\varepsilon_r'} + 1}\right)^2$

Augmentation de la profondeur de pénétration des microondes

$$d_p = \frac{C_0}{2\sqrt{2}\pi f \sqrt{\varepsilon_r'(\sqrt{1+\tan^2\delta} - 1)}}$$

Augmentation de la longueur d'ondes dans le produit

$$\lambda = \frac{C_0 \sqrt{2}}{f \sqrt{\varepsilon_r' (1 + \sqrt{1 + \tan^2 \delta})}}$$

21

Déplacement des points chauds dû à la variation des propriétés diélectriques :

Déplacement des points chauds dû à la variation des propriétés diélectriques :

23

Partie expérimentale

Partie expérimentale

Détermination des propriétés de la tylose:

- Capacité calorifique et fraction d'eau libre : µDSC
- Conductivité thermique : méthode du fil chaud
- Masse volumique : modèle de mélange à partir des propriétés des constituants
- Propriétés diélectriques : Sonde coaxiale ouverte
 - ➔ Problème de mesure des propriétés en phase congelée

Propriétés mesurées:

	Congelé	Décongelé
Cp [J/(kg.K)]	2321 ± 5%	3816 ± 1%
Ls [J/kg]	243626 ± 32	
x_fw [kg/kg]	(73,38 ± 0,01) %	
λ [W/(m.K)]	1,72 ± 5%	0,54 ± 5%
ρ [kg/m3]	961.9	1040.2
٤'	6	50.5
٤''	1.5	20.7

GEPEA UMR CNRS 6144

3

Société Française de Thermique

Etude de la porosité par tomographie sur un échantillon de tylose congelé puis lyophilisé

TOTAL POROSITY

Conclusion et perspectives

Conclusion

Un modèle a été développé et validé à partir des données de la littérature.

- Il a mis en évidence:
 - L'interaction des ondes électromagnétiques sur l'interface du changement d'état
 - > L'hétérogénéité spatiale et temporelle de la chaleur générée
 - > De faibles oscillations de températures

Le modèle permet d'appréhender la complexité du procédé de congélation assistée par microondes.

- Plusieurs puissances microondes, durées et fréquences de pulses seront testées pendant la congélation pour étudier l'effet sur la taille des cristaux de glace.
- La tomographie après lyophilisation permettra de mesurer la distribution de taille des cristaux de glace.
- Le modèle sera complété pour prendre en compte l'adaptation d'impédance et l'effet du procédé sur la taille des cristaux.

Merci de votre attention