

Méthodes inverses

par analyse nodale et modale à partir d'images multiéchelles (µm au cm) de champs de température

C. Pradere, E. Palomo, S. Dilhaire et J.C. Batsale.

TREFLE, CNRS UMR 8508, France

CPMOH, CNRS UMR 5798, France

Contexte

Objectifs: Mesure de propriétés thermophysiques multiéchelles

• Problèmes : Estimation de *champs de propriétés thermophysiques* (diffusivité...) dans des

matériaux hétérogènes

$$\overrightarrow{div}(\lambda, \overrightarrow{grad} \quad T(x, y, t)) = \rho C_p \left(\frac{\partial T(x, y, t)}{\partial t}\right)$$

2 Outils : Mesure de champs de températures (thermoréflectance, camera IR), modèles analytiques et numériques (quadripôle, différences finies...) et méthodes inverses (Fourier, nodale : OLS, TLS et modale: SVD)

3 Exemple: Multicouche, multiéchelle

Méthodes de mesures et de traitements

C. Pradere et al.: Journée SFT, Paris, France, 30 Septembre 2010.

Anner Anner Anner Anner Anner

Principe de la thermoréflectance par imagerie

Thermoréflectance continue (S. Dilhaire)

Principe de la thermoréflectance ponctuelle

Film IR (x10) lors de la congélation

Film IR (x10) lors de la congélation

10-11

0

10-10

Dispositifs et méthodes de mesure

Thermoréflectance pulsée (S. Dilhaire)

Réponse thermique à un impact laser de 100fs.

Delay = -10.0 ps

Champ imagé 5x5 microns

-2

Dispositifs et méthodes de mesure

Thermographie IR hétérodyne

Film IR à 1 kHz sans hétérodynage

Film IR à 500 kHz avec hétérodynage

Méthodes en transformée intégrales

Application avec caméra IR au cas impulsionnel en milieu homogène

Analyse de la transformation de Fourier spatiale du champ de température

Philippi I., Batsale J.C., Maillet D. et Degiovanni A. : (1995) Measurement of thermal diffusivity through processing of infrared images processing, Rev. Sci. Instru., 66(1), pp182-192.
Krapez J.C., 1999 Mesure de diffusivité longitudinale de plaques minces par méthode de grille-Journée SFT:"Thermographie IR quantitative" ONERA Mars 1999

Méthodes en transformée intégrales

Application avec caméra IR au cas impulsionnel en milieu homogène

Méthodes en transformée intégrales

Validation sur les mesures hétérodynes

Estimation de diffusivité sur 5x5 µm par TR et sur 1x1 mm par TIR

Méthodes nodales

Formulation du problème inverse sur les simulations

Cherche relation linéaire = tracer le Laplacien en fonction de la dérivée temporelle

Méthodes nodales

Méthodes nodales

Application expérimentale à une lame de verre

Diffusivité estimée 3.3.10⁻⁷ m²/s, Littérature 3.4.10⁻⁷ m²/s, Validation de la méthode

Méthodes nodales

Exemple milieu hétérogène et excitation créneau aléatoire

Champ de température simulé

Champ de corrélation

Image visible (x10) d'une pelure d'oignon

Cartographie de Fourier estimé

Cartographie de diffusivité obtenue

Méthodes modales (E. Palomo)

SVD/KLD techniques in association with lock-in thermography

Huge amount of noisy data !!

Main assets

- No analytical solutions required. Few constraints concerning excitations (time & space patterns)
- Homogeneous & heterogeneous materials
- Optimum data and noise reduction
- Phases recognition and interfaces location
- Parsimonious estimates for intrinsic properties (diffusivities) and exchange coefficients
- Point-by-point and whole-domain approaches

Constraints

- Thin sample, 2D heat transfer models
- Spatially uncorrelated noise

SVD/KLD (PCA/POD/HT/...)

A tool providing optimal low-dimensional approximations of high-dimensional sets of signals

A tool providing optimal linear filtering of regular signals

Energy function

$$W(x, x') \equiv \int_{t} T(x, t) T(x', t) dt$$

Spectral decomposition

$$W(x, x') = \sum_{m=1}^{\infty} \sigma_m^2 V_m(x) V_m(x')$$

Eigenfunctions V_m(x) forms a <u>orthonormal</u> basis

States z_m(t) are <u>orthogonal</u>

Spatially-uncorrelated <u>noise has no</u> <u>effect on eigenfunctions</u>, the noise being entirely reported on states

 $x = (x_1, x_2, x_3)$

$$\forall t, \ T(x,t) = \sum_{m=1}^{\infty} V_m(x) z_m(t)$$

Optimal low dimensional approximations (minimum norm of the approx. error)

$$\forall t, T_r(x,t) = \sum_{m=1}^{r} V_m(x) z_m(t)$$

(minimum risk)

$$\hat{T}(x,t) = \sum_{m=1}^{\infty} V_m(x) \left(\frac{\sigma_m^2}{\sigma_m^2 + \sigma_{\varepsilon,m}^2} \right) \tilde{Z}_m(t)$$

Thin samples Uniform heating Very short times (s) Very low noise sensitivity Many numerical tests Some experimental tests

SVD/KLD

An efficient tool for phases discrimination and interfaces location – Microstructure identification

Number of phases

Rank of the energy matrix W = Number of phases

Eigenfunctions sign \rightarrow Phases discrimination

 $\forall (x,y) \in \Omega_i \& (x',y') \in \Omega_j, \exists m / V_m(x,y) V_m(x',y') < 0$

Optical Microscopic picture

Méthodes modales (E. Palomo)

Linear least squares method applied on some few equations which are automatically chosen

Equations selection Number of unknowns Noise propagation through KLD

Heterogeneous plate: Estimated values for thermal parameters.									
	Noise amplitude ($^{\circ}C$)								
	± 0.50	± 0.10	± 0.02						
$\hat{\alpha}_1 (\times 10^{-6} m^2 s^{-1})$	0.1524	0.1526	0.1511						
$\left \left(\alpha_{1}-\hat{\alpha}_{1}\right)/\alpha_{1}\right \times100$	0.60	0.73	0.23						
$\hat{\alpha}_2 \; (\times 10^{-6} m^2 s^{-1})$	0.5001	0.5013	0.5044						
$\left \left(\alpha_2 - \hat{\alpha}_2 \right) / \alpha_2 \right \times 100$	1.00	0.74	0.12						

Numerical example – 2 phase plate – Laser spot

Méthodes modales (E. Palomo)

CARBON/EPOXY composite material

No VACUUM

Experimental test

RESULTS (~100°C)	ICAM CETHIL	TREFLE	
α _x (m²/s)	4 ×10 ⁻⁷	3.80×10 ⁻⁷	
α _γ (m²/s)	3.5×10⁻ ⁶	3.54×10⁻ ⁶	

Méthodes de traitement et d'analyse

	Fourier	Nodale			Modale		
Matériau homogène		Matériau homogène Matériau hétérogène		Matériau homogène Matériau hétérogène			
	Méthode globale	Méthode locale	Méthode locale	Locale	Globale	Locale	Globale
1	La transformée de Fourier apporte une « réduction » de la quantité d'information. L'expression analytique s'écrit plus « simplement » dans l'espace transformé. L'influence du bruit de mesure est diminuée par le fait que les signaux sont moyennés.	Pas besoin de solutions analytiques Vérification statistique du modèle Cartographies de propriétés Indépendant de l'excitation		Compression des données Pas besoin de solutions analytiques Peu de sensibilité au bruit Cartographies de propriétés Indépendant de l'excitation			
	La transformation de Fourier spatiale = solutions dans le cas d'un matériau homogène. Traitement de toute l'image alors qu'en nodal, uniquement quelques pixels sont « utilisables ».	Sensible Milieu peu ép Bruit décorré	e au bruit ais, modèle 2Dt ilé spatialement	Milieu peu épais, modèle 2Dt Bruit décorrélé spatialement			2Dt tent
	Excitation Dirac seulement						

Dispositifs de mesure

Mesure de champs de température de 0.5 µm au m

Mesure de champs de température de 10⁻¹² à 10³ s

Tous types d'excitation périodiques ou pas

Méthodes inverses

Permettent des caractérisations multiéchelles (locale et globale)

Méthodes nodale et modale permettent tout type d'excitation (spatiale et temporelle)

Caractériser matériau hétérogènes (nodales et modales)

Repérage des interfaces (modales), modélisation analytique par domaine homogènes

Validations

Confrontation des 3 méthodes (Fourier, nodale et modale) sur matériau homogène Confrontation des 3 méthodes aux différentes résolutions (spatiales et temporelles) Application à des matériaux hétérogènes

Perspectives

Estimation simultanée et aléatoire de diffusivités et de termes sources

Image visible de l'échantillon

Image visible (x10) d'une pelure d'oignon

Film IR, balayage faisceau laser

Cartographie de diffusivité obtenue

Cartographie de diffusivité obtenue