

Conductivité effective de mousses métalliques : quel VER et que mesure-t-on ?

J.M. Hugo J.L. Gardarein F. Rigollet F. Topin

Polytech'Marseille Dpt Mécanique Energétique Laboratoire IUSTI - CNRS- UMR 6595 Technopôle de Château-Gombert 5, Rue Enrico Fermi 13453 Marseille Cedex 13 – France

Approche

Morphological Caracterisation

3D morphologyAdvanced morphometry

Numerical Simulation on real Geometry

- Heat Transfer
- Fluid flow
- Mixing

Experimental Measurement

- Fluid flow law
- Heat transfer
- Catalysis

Transfer properties

Quelques exemples de mousses

NiCr foams – Recemat (10,20,30,40,50,100 ppi)

Ceramic foams

Sintered Polyethylene - Porvair

Trabecular bone

Mesures géométriques : iMorph

Segmentation des phases: solide/ fluide Reconstruction 3D Tesselation de l'interface

Visualisation Porosité Surface spécifique Exportation vers les codes CFD

Extraction des éléments structurants Cellules Réseau de brins

Porosimetrie Forme des pores Orientations

Orientations Connectivité Longueurs

Calculs Géodésiques

Tortuosité

En Bref

- Cells present ellipsoid shape
- Cells organization induces anisotropy
- Geometrical tortuosity depends on cells orientation and organisation
- Foams are roughly homothetic

Structural dependencies Sp = 3/dPore dThroat = 0.52 dPore Strut length = 0.4 dPore

VER de porosité

VER de porosité (II)

Mesh Construction for specific surface calculation

- Isodensity surface calculation with the "Marching Cubes" Method
- Mesh triangles are data ordered
 - each triangle is included into a small cube
 - each contains a maximum of 4 triangles

Rve of Specific surface

same behavior for Fibernide, Recemat and ERG foams

Conductivité thermique effective

$$\frac{1}{V}\int q(x)dV = -\mathbf{K}\frac{1}{V}\int \nabla T(x)dV$$

Pour les 3 directions : -Calcul des champs de température -Calcul des flux de chaleurs Obtention du tenseur de conductivité

$$\sum_{\substack{j \in Nodes \\ connected to p}} \Phi_{pj} = \sum_{\substack{j \in Nodes \\ connected to p}} -\frac{k_{pj}}{l_{pj}} S_{pj} \left(T_j - T_p\right) = 0$$

Approche experimentale

- Mesurer "directement" la conductivité apparente dans 3 directions
 - Résultats présentés direction épaisseur

• Mesurer le tenseur de conductivité (en cours)

Blocs de 50×50×100mm³

	PPI	Taille moy. pores	ρ	ho Cp	Е
	/	mm	kgm ⁻³	$Jm^{-3}K^{-1}$	/
Mousse A	10	2.5	225.6	201 716 ± 2%	0.917 ± 1%
Mousse B	20	1.3	174.6	155 827 ± 2%	0.936 ± 1%
Mousse C	40	0.6	256.5	230 699 ± 2%	0.905 ± 1%

$$\mathcal{E} = \frac{\rho_{alu} - \rho_{mousse}}{\rho_{alu} - \rho_{air}}$$

$$\rho C_{mousse} = \varepsilon.\rho_{air} C_{air} + (1 - \varepsilon).\rho_{alu} C_{alu}$$

L'expérience photothermique

Modélisation directe de l'expérience : quadripôles thermiques

Analogie électrique instationnaire dans l'espace de Laplace (p) puis retour numérique (t)

$$\eta = L^{-1}(\theta_{ar}) = f(t, \beta)$$
 avec $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$

Paramètres	β_l	β_2	β_3	β_4	$\left[(\sigma = \sqrt{p/\beta_1}) \right]$
	<i>S</i> ⁻¹	/	K.s ⁻¹	1	
Expression	α_m / e_m^2	$h e_m / k_m$	$W / \rho_m C p_m e_m$	$\frac{\rho_s C p_s e_s}{\rho_m C p_m e_m}$	
Valeur nominale	10-2	10-1	8.10-2	3.10-3	
Paramètre d'intérêt car $\alpha_m = k_m / \rho C_m$					

Sensibilités

Sensibilités réduites :

$$\beta_1 = \alpha_m / e_m^2$$
$$\beta_2 = h e_m / k_m$$

$$\beta_3 = W / \rho_m C p_m e_m$$

$$\beta_4 = \frac{\rho_s C p_s e_s}{\rho_m C p_m e_m}$$

 Z_4 faible : β_4 fixé

Convergence, résidus, incertitudes

- 2 types d'incertitudes
- Aléatoire : amplification du bruit de mesure
- Déterministe : amplification du biais sur les paramètres fixés

Résultats

		$\hat{\beta}_1 \times 10^3 \pm (IC + BI) \%$	$\hat{\beta}_{2 \pm}$ $(IC + BI) \%$	$\hat{\beta}_{3 \times 10^{2} \pm}$ $(IC + BI) \%$	$\hat{eta}_4 \times 10^3 \pm$ (IC) % (fixé)	$k \pm \Delta k$	h ±∆h
Mousse		<i>S</i> ⁻¹	/	$K.s^{-1}$.	/	W.m ⁻¹ .K ⁻¹	W.m ⁻² .K ⁻¹
	A	12.8 ± (1.5 + 0.2) %	0.12 ± (2 + 0.1) %	2.6 ± (0.3 + 0.1) %	2.7 ± (20) %	6.2 ± 0.3	15 ± 1
	В	13.3 ± (1.5 + 0.3) %	0.14 ± (2 + 0.2) %	3.1 ± (0.3 + 0.1) %	3.5 ± (20) %	5.0 ± 0.3	14 ± 1
	С	11.3 ± (4 + 0.2) %	$0.09 \pm$ (20 + 0.1) %	1.9 ± (3 + 0.1) %	2.3 ± (20) %	6.3 ± 0.5	12 ± 3

Résultats

Bonne confiance dans nos mesures

Réseaux solide & fluide

Fluid phase :

Influence of Nusselt Number

Influence of fluid conductivity

Impact de la porosité

- La conductivité thermique dépend de la porosité
- En donnant artificiellement la porosité du squelette AL20 on obtient la conductivité de l'AL10 ⇒ Pas d'influence de la taille de pore

Conuctivité directionnelle

Mesure de la conductivité dans des parallélépipèdes extraits pour une révolution de l'échantillon

- Pas de variations suivant z
- Variations sinusoïdales en opposition de phase pour x et y

Impact de la tortuosité

- Calcul tortuosité pour la révolution
- Dépendance linéaire entre tortuosité et conductivité thermique
- Même comportement pour toutes les mousses
- Pour une tortuosité donnée la conductivité est différente selon l'épaisseur

Conductivité thermique en fonction de la tortuosité

Influence de l'organisation des cellules

- Dans l'épaisseur le nombre de connections n'est pas le même que dans le plan image
- L'allongement et l'organisation des cellules expliquent ce phénomène
- À chaque connection le flux de chaleur se réparti entre les branches

Plus de connections --> plus de brins à même porosité La section des brins est plus faible pour le réseau présentant le plus fort nombre de connections /m

Simulation numérique directe

- 3 mousses ERG 10, 20, 40 PPI echantillons 50 x 50 x 100 mm
- taille de pores 4,5 3,5 2,4 mm, brins $366 232 188 \mu$ m
- Discretisation géométrique
 - Résolution d'image de 75 µ à 250 µm
- Domaines de calcul
 - maillage sur image sous résolue ou entière
 - Domaine Cubique de 10 mm à 45 mm
 - Pavés 22x8x8 mm, 22x10x10
- Problème de taille de maillage et temps de calcul
 - Erreur géométrique et forme des objets
 - Objectif
 maillage à moins de 10 milion de cellules au maximum
 et 150 000 cellules pour les plus petits cubes

Premier maillage

- 45 mm arête
- résolution initiale d'image 150 μm
- Taille de maille 700 µm

- 'erreurs géométriques
- Brins coupés
- Perte de matière up to 5 %
- Perte de forme

 \rightarrow 2 500 000 cellules

Un « Bon » maillage ;-)

- 15 mm arête
- résolution initiale d'image 75 μm
- Taille de maille 175 µm
- Pas de perte d'infos
- Le compromis :
- Maillage à 350 µm
 - Permet de travailler sur différentes tailles de bocs
 - Discrétisation satisfaisante solution identique au cas + fin

 \rightarrow 10 000 000 cellules

Champs de température

Profil de température

20 plans de coupes sur 8 mm - ERG 20 PPI

Profil de température moyenées

• 50 plans de coupes

Résultats conductivité « macro »

- Calculs sur blocs de 20 mm environ
- Mousse légèrement anisotrope
- Direction principales des cellules proches des axes XYZ
- Extraction des conductivités apparentes dans 3 directions
- Résultats sur les termes diagonaux uniquement

Conductivite (W/mK)	10	20	40
Х	10.44	6.49	9.06
Y	10.19	8.3	8.04
Z	13.36	10.96	10.06
porosite (%)	87.96	90.41	89.78

Gradient de temperature

Moyenne sur un plan de coupe

Derivée point à point et interpolation sur une longueur croissante

Gradients transverses

Gradient principal

Conclusions

Méthode de mesures mise en place

Calculs sur réseaux opérationels Premiers résultats de simulation directe Possibilité de travailler sur les approches statistiques

En cours : appliquer la démarche au tenseur de conductivité