

Homogenisation techniques dedicated to paper industry: theory and applications.

Bloch, J.-F.

Paris, 30 septembre 2010

DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

J.-F. Bloch

Grenoble

Part I – Homogeneization theory applied to paper

Part II – REV and X-Ray microtomography

Part I - CONTENT

- I Introduction
- II Method presentation
- III Main Results
- IV Example
- V Conclusion

Grenoble

I - INTRODUCTION <u>AIM</u>:

Temperature field in paper during hot pressing

Paper and Felt: deformable porous media Non saturated: (non /) wetting phases

<u>Complex structure</u> at the pore scale

 $\Rightarrow Macroscopic modelling:$ <u>Homogeneization</u>

Homogeneization:

microscale to macroscale

EQUIVALENT POROUS MEDIUM

J.-F. Bloch

DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

ECOLE INTERNAT

II – METHOD PRESENTATION

The medium is assumed as <u>periodic</u>.

<u>Random</u> media yield similar macroscopic description modelling.

AURIAULT J.-L. (1991) "Heterogeneous medium. Is an equivalent macroscopic description possible?", Int. J. Engng. Sci., 29, 7, pages 785-795.

J.-F. Bloch

Grenobl

II – METHOD PRESENTATION: Multiscale expansion method

- without macroscopic prerequisites,
- the macroscopic law,
- the effective parameters,
- the validity domain of the model.

Grenobl

II – METHOD PRESENTATION: Multiscale expansion method

SCALE SEPARATION

pore dimension / sample size

 \Leftrightarrow model quality.

Grenoble

II – METHOD PRESENTATION: Main steps

- 1 Physical phenomena at the microscopic scale.
- 2 Two different scales are defined (ϵ).
- 3 Physical Equations at microscopic scale.
- 4 The dimensionless parameters are expressed in function of ε .

Grenob

II – METHOD PRESENTATION: Main steps (2)

5 – Asymptotic expansions in power of ε are introduced.

6 – Problems at different orders are solved to determine the successive approximations of the variables.

7 – Physical quantities are evaluated from the dimensionless ones.

II – METHOD PRESENTATION

- The scale ratio $\varepsilon = l / L$
- For a paper web, the characteristic lengths $l=10 \ \mu m$ and $L=1 \ mm$ $\Rightarrow \ \epsilon = 10^{-2}$
- Dimensionless parameters are evaluated in term of ϵ .

$$\frac{\partial \rho_k C_{p_k} T_k}{\partial t} + v_k . \nabla \phi_k C_{p_k} T_k = \nabla . \phi_k \nabla T_k$$

Flux conservation of heat on the interface:

$$\lambda_{k_{ij}} \left(\frac{\partial T_k}{\partial X_j} \right) N_i = \lambda_{l_{ij}} \left(\frac{\partial T_l}{\partial X_j} \right) N_i$$

Temperatures are continuous on each interface (no resistance) :

$$T_k = T_l$$

$\begin{array}{l} \text{II} - \text{METHOD} \\ \text{PRESENTATION} \\ \text{Dimensionless variables: } X = X^*. X^R \\ \text{Dimensionless parameters:} \end{array}$

U PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAU

II – METHOD PRESENTATION - Reference Values

$(J . m^{-1} . s^{-1} . K^{-1})$	$(J . kg^{-1} . K^{-1})$	$(kg.m^{-3})$
λ_{s}	C _{ps}	ρ_{s}
0.33	1.33.10 ³	1.5.10
$\lambda_{\mathbf{w}}$	$\mathbf{C}_{\mathbf{p}\mathbf{w}}$	$ ho_{w}$
0.602	4.18.10 ³	10 ³
λ _a	C _{pa}	$ ho_{a}$
0.026	10 ³	1.23

Grenoble DAGO

II – METHOD PRESENTATION

 $N_{\lambda_{aw}} = 0.043 = 0$

$$\mathbf{P}_{\mathrm{w}} = \frac{\mathbf{C}_{\mathrm{w}} \mathbf{1}^2}{\lambda_{\mathrm{w}} \tau} = \mathbf{O} \left\{ \mathbf{-1} \mathbf{P}_{\mathrm{a}} \right\}$$

$$P_{s} = \frac{C_{s}l^{2}}{\lambda_{s}\tau} = O \langle \langle \rangle_{w} \rangle$$

Grenoble

II – METHOD PRESENTATION

Each physical quantity ϕ is then looked as:

$$\varphi = \varphi \overset{\Phi}{\rightarrow} + \varepsilon \cdot \varphi \overset{\Phi}{\rightarrow} + \varepsilon^2 \cdot \varphi \overset{\Phi}{\rightarrow} + \varepsilon^3 \cdot \varphi \overset{\Phi}{\rightarrow} + \dots$$

Homogenisation process
⇒ approximated macroscopic models.
Model accuracies = O(ε)
⇒ The larger the scale separation is, the better is the result (approximation).

Grenob

III - MAIN RESULTS

A - Small Péclet number: diffusion - convection

A-1: Pe
$$\leq$$
 O (ϵ^2) P = O (ϵ^2)

$$<\mathbf{C}>_{w,s} \frac{\partial \mathbf{T}}{\partial t} = \frac{\partial}{\partial x_i} \left(\lambda_{ij}^{\text{eff}} \frac{\partial \mathbf{T}}{\partial x_j} \right) + \mathbf{O}$$

With :

Grenoble

$$\lambda_{ij}^{\text{eff}} = \frac{1}{|\Omega|} \int_{\Omega_{w} + \Omega_{s}} \lambda_{ij} \left(I_{kj} + \frac{\partial \chi_{Ik}}{\partial y_{j}} \right) d\Omega$$

 $< C >_{w,s} = -$

$$\frac{1}{\Omega_{w}}C_{w}d\Omega + \Omega_{s}C_{s}d\Omega$$

DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

III – MAIN RESULTS (2) Grenobl Pe $\leq O(\epsilon^2)$ P $\leq O(\epsilon^3)$ $\mathbf{D} = \frac{\partial}{\partial \mathbf{x}_{i}} \left(\lambda_{ij}^{\text{eff}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}_{i}} \right) + \mathbf{O} \mathbf{E}^{2}$ A-3: Pe = O(ε) P = O(ε^2) ${}_{w,s}\frac{\partial T}{\partial t} = \frac{\partial}{\partial x_i} \left(\lambda_{ij}^{eff} \frac{\partial T}{\partial x_i} \right) - \langle C V_i \rangle_{\Omega} \frac{\partial T}{\partial x_i} +$

J.-F. BLOCH, J.-L. AURIAULT, (1998) 'Heat Transfer in Nonsaturated Porous Media: Modelling by Homogenisation', TiPM, 30: 301–321.

III - MAIN RESULTS (3)

A-4: Pe = O(
$$\varepsilon$$
) P \leq O(ε ³)

$$0 = \frac{\partial}{\partial x_i} \left(\lambda_{ij}^{\text{eff}} \frac{\partial T}{\partial x_j} \right) - \langle C V_i \rangle_{\Omega} \frac{\partial T}{\partial x_i} + O \langle \rangle$$

A-5: $Pe_{a,w} = O(\varepsilon) Pe_s = O(\varepsilon^2) P = O(\varepsilon^2)$

$$< C >_{w,s} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x_i} \left(\lambda_{ij}^{eff} \frac{\partial T}{\partial x_j} \right) - < CV_i >_{\Omega_a + \Omega_w} \frac{\partial T}{\partial x_i} + O$$

Grenoble pagora

B - Higher Péclet number : dispersion

B-3: Pe = O (1) P ≤ O (ε³)

$$\lambda_{ij}^{***\text{eff}} = \frac{1}{|\Omega|} \int_{\Omega_{w,s}} \left[\lambda_{ij} \left(I_{1j} + \frac{\partial \chi_{III j}}{\partial y_1} \right) - C \Psi_i^{(0)} \chi_{III j} \right] d\Omega$$

B-2: Pe = O (1) P = O (ε²)

$$\varepsilon < C >_{w,s} \frac{\partial T}{\partial t} = \varepsilon \frac{\partial}{\partial x_i} \left(\lambda_{ij}^{***eff} \frac{\partial T}{\partial x_j} \right) - \langle CV_i \rangle_{\Omega} \frac{\partial T}{\partial x_i} + O(2) \right)$$

Grenoble DAGORA

Grenoble MP III - MAIN RESULTS (5)

B - Higher Péclet number : dispersion

ÉCOLE INTERNATIONALE DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

Pe \geq O (ϵ^{-1})

This case is NOT homogeneizable

 \Leftrightarrow no equivalent medium exists !

Grenoble INP

IV - EXAMPLE: Hot pressing of a paper web

$$Pe = \frac{\rho C_p V I}{\lambda} \# \frac{10^3 . 10^3 . 10^{-2} . 10^{-6}}{0.5} = O(0^{-2}) O(0^{-2})$$

J.-F. Bloch

ÉCOLE INTERNATIONALE DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

IV – EXAMPLE: Assumptions

$$0 = \frac{\partial}{\partial x_{i}} \left(\lambda_{ij}^{\text{eff}} \frac{\partial T}{\partial x_{j}} \right) - \langle CV_{i} \rangle_{\Omega} \frac{\partial T}{\partial x_{i}}$$

$$\lambda_w = O\left(s \right)$$

Grenoble IN pagora

$$n_s + n_w \# 1.$$

$$\rho_a C_{pa} V_a << \rho_w C_{pw} V_w$$

$$0 = \frac{\partial}{\partial x_{i}} \left(\lambda_{w} \mathbf{f}_{w} + n_{s} \mathbf{f}_{j} \frac{\partial T}{\partial x_{j}} \right) - \langle C | V_{i} \rangle_{\Omega} \frac{\partial T}{\partial x}$$
$$0 = \frac{\partial}{\partial x_{i}} \left(\lambda_{w} I_{ij} \frac{\partial T}{\partial x_{j}} \right) - \langle C V_{i} \rangle_{\Omega} \frac{\partial T}{\partial x_{i}}$$

$$0 = \frac{\partial}{\partial x_{i}} \left(\lambda_{w} I_{ij} \frac{\partial T}{\partial x_{j}} \right) - \langle CV_{i} \rangle_{\Omega_{s} + \Omega_{w}} \frac{\partial T}{\partial x_{i}}$$

25 ÉCOLE INTERNATIONALE DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

J.-F. Bloch

Temperature field in paper and felt

		FLUTH
	1	LLVIN
1	=	301
2	=	305.8
3	=	310.6
4	=	315.4
5	=	320.2
6	=	325
7	=	329.8
8	=	334.6
9	=	339.4
10	=	344.2
4.4		7.00

 $T_{roll} = 50 \ ^{\circ}C$

Mach. Speed:10 m.s⁻¹, Paper thick.: 320 μm, Felt thick.: 2.5 mm, Nip Length: 2.5 cm.

IV - EXAMPLE

Grenoble INP pagora

Detail of temperature field in paper during hot pressing.

ÉCOLE INTERNATIONALE DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

V – CONCLUSIONS / Part I

- Same microscopic physics, different law structures, with different effective coefficients.
- Evaluating dimensionless numbers (ε): macroscopic model catalogue, their <u>effective</u> <u>parameters and their validity domains</u> are obtained.
- Physical <u>characteristic values</u> dedicated to the studied process.

Grenoble IN- CONCLUSION / Part I (2)

- The equivalent description corresponds to a medium that <u>reacts globally</u> to the considered physical excitation like the microscopic medium studied.
- If the medium cannot be homogenised, macroscopic properties are <u>not intrinsic</u> to the media.
- Applicable to any porous medium that satisfies the <u>microscopic hypotheses</u> in use here.

Part II

3D structure of Papers

/ VER (X-Ray Microtomography)

J.-F. Bloch

Estimation of paper physical properties based on synchrotron X-ray microtomography.

Jean-Francis Bloch

Sabine Rolland du Roscoat Maxime Decain, Christian Geindreau

Grenob

Content (Partie Non présentée)

- I. Context
- II. Materials and Methods
- III. Estimation of paper structure / VER
 Deterministic approach
 Statistical approach
 I. Estimation of paper properties
- II. Conclusions and perspectives

I. Context

- Synchrotron X-ray microtomography gives access to the inner structure of samples at a micrometric scale
 - Quantification of the structure
 - Estimation of physical properties
- Comparison to experimental data

Grenobl

I. Position of the problem

- May Physical properties be simulated from X-Ray microtomography?
- Analysed volume is much smaller than the characteristic lengths / physical properties?

Problem of the representativity for:

- Porosity and specific surface area
- Effective thermal conductivity and permeability

REV

Definition

DU PAPIER, DE LA COMMUNICATION IMPRIMÉE ET DES BIOMATÉRIAUX

Two approachs Deterministic (classical)¹ Statistical²

¹ W.J. Drugan, J.R. Willis, "A micromecanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites.", J. Mech, Phys Solids, Vol. 44, No 4, 1996, pp 497-524.

² T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, "Determination of the size of the representative volume element for random composites: statistical and numerical approach", International Journal of Solids and Structures 40, 2003, pp 3647-3679.

III.5. Conclusions / Statistical REV

• Estimation of properties on volumes smaller than the deterministic REV

saving computing time in the case of the estimation of physical properties

Rolland du Roscoat, S., Decain, M., Thibault, X., Geindreau, C., Bloch J.-F. *Estimation of microstructural properties from synchrotron X-Ray microtomography and determination of the REV size in paper materials*. Acta Materiala, 55(8), 2007, 2841-2850

Grenob

Content

I. Context

Grenoble

- II. Materials and Methods
- III. Estimation of paper structure / VER
 Deterministic approach
 Statistical approach
 IV. Estimation of paper properties
 V. Conclusions & perspectives

IV.1. Estimation of permeability

- Estimation of tensor of permeability
 - No penetration of fluid into fibres
 - Pressure gradient is imposed at the interface
 - Estimation of the local fluid velocity
 - Deducing the permeability
 - from Darcy Law

Koivu, V., Geindreau, C., Decain, M., Mattila, K., Bloch, J.-F., Kataja, M., *Transport* properties of heterogeneous materials combining computerized x-ray micro-tomography and direct numerical simulations, International Journal of Computational Fluid Dynamics, 23(10), 2010, 713-721

Grenob