

Effet de survitesse en proche paroi en dispersion thermique en milieu granulaire

Denis Maillet, Benoît Fiers, Christian Moyne

LEMTA – Nancy-Université & CNRS – Vandoeuvre-lès-Nancy

Plan	
 Dispersion thermique dans un milieu poreux homogène et modèle à 1 température 	Thomas Metzger (2002) (eau/billes de verre) Amélie Testu (2005) (air/billes de verre +support catalyseur/N ₂)
2. Effet de survitesse et dispersion hétérogène en proche paroi	
3. Modèle de couche débitante	Benoît Fiers (2009) (air/billes de verre)
4. Caractérisation des effets thermiques de survitesse	
Quelle température est modélisée/mesurée ? → échelle d'observation	
Quelle technique inverse de caractérisation thermique ? → estimation bayésienne	

1. Dispersion thermique : milieu poreux homogène et modèle à 1 température

Prise de moyenne = réduction physique de modèle

Journée SFT - Caractérisation thermique et échelle d'observation – Paris – 30 septembre 2010

Opérateur de prise de moyenne:

$$\langle f \rangle (P) = \frac{1}{V(P,D)} \int_{V(P,D)} f(P') dV(P')$$

$$f = \chi \implies \langle f \rangle = \varepsilon$$
 porosité
Fluide: $\chi(P) = 1$ Solid: $\chi(P) = 0$

$$f = \boldsymbol{u} \implies \langle f \rangle = \boldsymbol{u}_{\scriptscriptstyle D}$$
 vitesse de Darcy

$$f = \rho c_p \implies \langle f \rangle = (\rho c_p)_t$$
$$(\rho c_p)_t = \mathcal{E} (\rho c_p)_f + (1 - \mathcal{E}) (\rho c_p)_s$$
chaleur volumique totale

$$f = \rho c_p T \implies \langle f \rangle = H$$

volumetric enthalpie volumique

Définition de la *température moyenne enthalpique* : $T_{H} = H / (\rho c_{p})_{t}$

Equation de la chaleur du modèle à une température

• cas d'un écoulement 3 D

• Ecoulement **piston dans direction** $x : u = u_{Dx}$ (champ T : 2D)

• Correlations pour les coefficients de dispersion thermique

Lit granulaire: billes de verre monodisperses + écoulement d'air

Inversion de signaux de thermocouples (modèle analytique, point source)

$$\frac{\lambda_x}{\lambda_f} = \frac{\lambda_{eq}}{\lambda_f} + 0.211 P e^{1.45} = \frac{\lambda_{eq}}{\lambda_f} + 0.126 R e^{1.45}$$

for 12 < Re < 130 and Pr = 0.7

$$\frac{\lambda_y}{\lambda_f} = A_y + B_y \operatorname{Re} = 6.40 + 0.0788 \operatorname{Re}$$

= 6.40 + 0.113 Pe
for 12 < Re < 130 and Pr = 0.7

7

<u>Cemta</u>

2. Effet de survitesse: dispersion hétérogène en proche paroi

Equation de la chaleur: température moyenne enthalpique dans un milieu poreux continu (S.E.R.)

$$\rho c_t(y) \frac{\partial T}{\partial t} = \lambda_x(y) \frac{\partial^2 T}{\partial x^2} + \frac{\partial}{\partial y} \left(\lambda_y(y) \frac{\partial T}{\partial y} \right) - \rho c_f u(y) \frac{\partial T}{\partial x}$$

$$\begin{aligned} -\lambda_x(0) & \frac{\partial T}{\partial x} = \varphi_{elec}(x, t) & \text{in } y = 0 \\ T \to 0 & \text{as } x \to \pm \infty & \text{and } T \to 0 & \text{as } y \to +\infty \\ T = 0 & \text{at} & t = 0 \end{aligned}$$

$$\varphi_{elec}(x, t) = W(H(x) - H(x - \ell))H(t)$$

Modèle milieu poreux continu \rightarrow homogène:

 $u(\chi) \Rightarrow \lambda_x(\chi) ; \lambda_y(\chi)$

Transformation de Laplace

Transformation de Fourier

 $\overline{T}(x,y,p) = \int_{0}^{+\infty} T(x,y,t) \exp(-pt) dt \qquad \widetilde{T}(\alpha,y,p) = \int_{-\infty}^{+\infty} \overline{T}(x,y,p) \exp(-i\alpha x) dx$

$$\overline{\frac{\partial^2 \tilde{T}}{\partial y^2} - \left(\frac{\lambda_x}{\lambda_y}\alpha^2 + \frac{\rho c_2}{\lambda_y}\rho + i\frac{\rho c_1 u}{\lambda_y}\alpha\right)\tilde{T}} = 0 \qquad \qquad \frac{\partial^2 \tilde{T}}{\partial y^2} - k^2 \tilde{T} = 0$$

Une couche (modèle milieu homogène):

$$x = \pm \infty \rightarrow x = \pm L$$

$$\alpha \rightarrow \alpha_n = n\pi/L$$

$$k^2 \rightarrow \left(k_n^2 = \frac{\lambda_x}{\lambda_y}\alpha_n^2 + \frac{\rho c_t}{\lambda_y}p + i\frac{\rho c_f u}{\lambda_y}\alpha_n\right)$$
diffusion
anisotrope
transitoire
advection

Impédances thermiques:

$$Z_{1} = \tanh(k_{n} y/2)/(\lambda_{y} k_{n})$$

$$Z_{3} = 1/(\lambda_{y} k_{n} \sinh(k_{n} y))$$

$$Z_{\infty} = 1/\lambda_{y} k_{n}$$

Modèle tricouche (2 couches poreuses + paroi):

Effet de survitesse : U' > U Redistribution du flux dans paroi

Etude de sensibilité: trop de paramètres pour caractérisation couche proche paroi

Journée SFT - Caractérisation thermique et échelle d'observation – Paris – 30 septembre 2010

3. Modèle de couche débitante

Modèle tricouche réduit (paroi + « canal proche paroi » + coeur):

• Modèle réduit tricouche: étude de sensibilité

Paramètres « naturel s» :

P1 = δ , P2 = h, P3=(ρc_p)_f \mathbf{u}/λ_y , P4 = $(\rho c_p)'_t \delta$, P5 = $\lambda_x \delta$, P6 = $(\rho c_p)_f \mathbf{u}' \delta$

P3, P4, P6 peuvent être estimés !

4. Caractérisation des effets thermiques de survitesse

Thermogrammes

• Stratégie d'estimation bayésienne: 1 seul paramètre complètement libre u'

Inversion de 4 thermocouples : $y_i > \delta = d/2 = 1$ mm

Très bons résidus de température = 1,2 éc. Type bruit de mesure σ_{Ttrue} = 0.01 K

Résultats globaux: - inversion des thermocouples - modélisation pertes de charge par loi de type Ergun

Imagerie de structure par Résonnance Magnétique Iucléaire (IRM)

Wassim SALAMEH, Sébastien LECLERC1, Jean-Marie ESCANYÉ, Didier STEMMELEN (Nancy-Université october 2009)

Eau + billes de verre: diamètre = 2 mm Diameter interne de conduite : 16.5 mm

Variation de l'épaisseur de tranche (S.T.): Images: fonction caractéristique (0 or 1) \rightarrow porosité $\mathcal{E}(r)$ calculée sur surface cylindrique

L'ordre apparaît lorsqu'on augmente l'épaisseur de tranche (S.T.) 18

Carte de porosité

billes de polystyrène (d = 0,5 mm)
 dans tube (diam.:16, 5 mm)

- voxels de: 0.156 mm * 0.156 mm * 20 mm

(Master – IRM - FRJV)

Conclusions and perspectives

• Application industrielle :

Optimisation chauffage/refroidissement réacteurs lit fixe

• Défi scientifique:

Modélisation de la condition d'interface milieu poreux/paroi solide

• Réponse par caractérisation: modèle réduit analytique + estimation bayésienne

- d'un coefficient h unique

à un modèle avec effet de survitesse (terme d'advection=redistribution)

• Perspectives:

Estimation expérimentale du rapport des vitesses u'/u par I.R.M.

Condition limite plus « comestible » pour numériciens ?