

Caractérisation des hydrates de gaz : possibilités et limites de la DSC sous pression contrôlée

Didier Dalmazzone UER de Chimie et Procédés

Plan de la présentation

• Introduction

Les différentes structures d'hydrates : clathrates ; semi clathrates salins Travaux sur les hydrates de gaz à l'ENSTA ParisTech

• Méthodes expérimentales

Mesures thermodynamiques (p, T, x)

Mesure thermophysiques ($\Delta H_{diss}, C_p$)

Etude de la cinétique de formation des hydrates (émulsions w/o)

Conclusion

Les hydrates clathrates de gaz

Caractérisation des hydrates par HP-DSC

Les hydrates modèles : $H_2O - THF$; $H_2O - CCI_3F$ Les hydrates mixtes : $H_2O - THF - gaz$

Rôle de l'additif

- THF (ou CCI_3F) occupe les grandes cavités de la structure II \rightarrow hydrate stoechiométrique THF.17H₂O à pression atmosphérique
- Les petites cavités restent disponibles pour le gaz \rightarrow hydrate mixte
- L'hydrate mixte est plus stable que les hydrates simples de gaz ou de THF $\rightarrow T\uparrow$, $\Delta_{diss}H\uparrow$

Les hydrates semi-clathrates salins

Les composés [(*n*-Bu)_k(*iso*-Am)_{4-k}N⁺ ; X⁻] ou [(*n*-Bu)_k(*iso*-Am)_{4-k}P⁺ ; X⁻] forment des hydrates à forte teneur en eau (Fowler 1940, McMullan et Jeffrey 1959, Dyadin et Udachin 1984)

- H₂O forme des cages polyédriques où sont insérées les branches *n*-Bu ou *iso*-Am du cation
- L'anion (X = F, Cl, Br, OH, NO₃...) se substitue à une molécule H₂O dans le réseau cristallin
- Ex. :

TBAB.32H₂O

Shimada *et al.* Acta Crystallographica 2003

$T_{fus}(^{\bullet}C)$
29,5
30
29,9
29,9
27,4
29,8
15,1
12,4
12,5
27,4
5,4
8,9
30

Les semi clathrates mixtes

Certains semi-clathrates possèdent des cavités disponibles pour l'insertion de molécules de gaz. Ex. : TBAB.36H₂O.nCO₂

Caractérisation des hydrates par HP-DSC

Travaux sur les hydrates de gaz à l'UCP

- Modélisation thermodynamique des hydrates en présence de mélanges d'inhibiteurs
- Mesure des conditions de formation d'hydrates de gaz dans les fluides de forage off shore profond
 - р, Т, х
 - Cinétiques de formation
- Utilisation d'hydrates de gaz comme matériaux dans des procédés innovants
 - Réfrigération, transport de froid
 - Epuration des fumées de combustion, capture du CO₂
 - Stockage de gaz
 - Valorisation de biogaz
- Modélisation thermodynamique des semi clathrates

LA DSC SOUS PRESSION APPLIQUEE AUX HYDRATES DE GAZ

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Didier Dalmazzone

8

Dispositif expérimental : HP-µDSC VII SETARAM

- T:-50 ~ +120 °C
- P_{max} 400 bar

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

ETUDES THERMODYNAMIQUES

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Mesure des températures de dissociation : méthode continue

- La cristallisation a lieu hors équilibre, soit :
- Au refroidissement
- Après la fusion de la glace

La fusion débute à l'équilibre si :

- Vitesse faible
- Signal à 0 avant la fusion

$$\rightarrow T_{onset} = T_{fus}$$

Incertitude faible (0,1 ~ 0,2 °C)

Cas d'une fusion progressive

- La fusion se termine hors équilibre → correction nécessaire
- Incertitude plus forte (0,5 ~ 1 °C)

Erreur de mesure de T_{fus} par la méthode continue cas du binaire H₂O - NaCl

Caractérisation des hydrates par HP-DSC

Mesure des températures de dissociation : méthode étagée

$H_2O + 15 \% \text{ NaCl}$; $T_{fus} = -10.9 \degree C$

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Méthode étagée : hydrate semi clathrate de TBPB

Heat flow/mW

Bromure de tétra-*n*-butylphosphonium $(C_4H_9)_4P^+;Br^-$

Caractérisation des hydrates par HP-DSC

Thermogrammes de dissociation de l'hydrate de méthane dans une solution à 20 % de $CaCl_2$

Diagrammes *T-p* de stabilité des hydrates de méthane

On observe un très bon accord avec les mesures p-V-T

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Diagramme de phases x-T: TBMAC – H₂O

16

Diagrammes de phases x-T: TBMAC – H₂O – CO₂ TBPB – H₂O – CO₂

L'insertion de CO_2 stabilise la structure hydrate $\rightarrow T\uparrow$

Contrairement à l'hydrate de TBMAC l'hydrate mixte TBMAC + CO_2 est à fusion congruente

L'insertion de CO_2 stabilise la structure hydrate $\rightarrow T\uparrow$

L'allure générale du liquidus est inchangée

Journée thématique SFT 30/01/2015

Screening d'additifs pour la réfrigération

Caractérisation des hydrates par HP-DSC

PROPRIETES THERMO PHYSIQUES

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Mesure des enthalpies de dissociation

Suivi de la conversion par cyclage thermique :

- Succession de fusion / cristallisation des phases métastables
- Accumulation d'hydrates \rightarrow disparition progressive de l'eau libre

Caractérisation des hydrates par HP-DSC

Finalement...

Journée thématique SFT 30/01/2015

Enthalpie de dissociation et nombre d'hydratation

Mesures DSC $\rightarrow \Delta_{diss}H/mol H_2O$ Clapeyron : $\Delta v dp = (\Delta H/T) dT$ 450 En négligeant le volume des phases TBPB condensées $\rightarrow \Delta_{diss}H/mol CO_2$ 3,5 TBAB 400 0 0 $\frac{d\ln p}{dlm} = -\frac{\Delta_{diss}H}{dlm}$ 0 d1/TZR 3 TBACI 350 ΔH (kJ.kg⁻¹eau) 0 TBMAC 2,5 TBANO 300 Ln (p) 2 y = -47682x + 166.53TBACI 1,5 y = -14992x + 57,062y = -18483x + 66,891🗙 La glace 250 TBMAC H2O-CO2-TBANO3 TBPB ▲ H2O-CO2-TBACI H2O-CO2-TBPB 1 ×H2O-CO2-TBMAC • H2O-CO2-TBAB (Deschamps et al. 2009) 200 y = -54848x + 197.25 10 0 15 20 25 0,5 **TBANO** P (bar) En combinant les deux \rightarrow 0 0,0033 0,0034 0,0035 0,0036 0,0037 0,0038 n_{H2O} / n_{gaz} 1/T

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Mesure des capacités calorifiques

Mesure très sensible aux variations de pression et à la stabilité du programme thermique Doit être faite loin du point de dissociation

Caractérisation des hydrates par HP-DSC

ETUDES CINETIQUES

Journée thématique SFT 30/01/2015

Caractérisation des hydrates par HP-DSC

Cinétique de formation des hydrates de gaz en émulsion eau – dans – huile

Dispersion de la phase aqueuse dans une phase organique riche en gaz dissous Chaque gouttelette est un micro réacteur → réponse statistique Permet de s'affranchir du problème de reproductibilité

Goutte d'eau

 $x(CaCl_2) = x_0$

Limite thermodynamique due à la présence d'inhibiteur

Représentation schématique du processus

Huile riche en méthane

P(CH4), Tim

Couche d'hydrate

 $x(CaCl_2) = x_{eq}$

Cinétique de formation des hydrates

Les influences de la pression et du sous refroidissement sont clairement mises en évidence

Conclusion

- La DSC sous pression contrôlée de gaz est une technique très utile pour l'étude des hydrates de gaz :
 - Propriétés thermodynamiques (p, T)
 - Propriétés thermo physiques (ΔH , C_p)
 - Cinétique de formation en milieux dispersés
- L'absence d'agitation est palliée par un mode opératoire adapté
- La DSC ne donne pas d'information quantitative sur :
 - Les quantités de gaz consommées
 - La composition des phases
 - La cinétique de formation d'hydrates en milieu continu
- Elle doit être utilisée en association avec des réacteurs de plus grand volume et des moyens d'analyse :
 - Chromatographique
 - Spectroscopique
 - Visualisation…

Bilan

Thèses

- Mamdouh Kharrat (2004)
- Néjib Hamed (2006)
- Carmen Martinez (2009)
- Nadia Mayoufi (2010)
- Wassila Bouchafaa (2011)
- Amir Karimi (2013)
- Luiz Paulo Sales Silva (2016)

Postdoc

- Adel Seguatni
- Johnny Deschamps
- Olksandr Dolotko
- Wei Lin
- Ayako Fukumoto

Collaborations

- Total
- IFP
- Cemagref/Irstea
- iCarnot MINES
- Fraunhofer UMSICHT
- Air Liquide
- AREVA

Projets

- Stock-Hydrate (CNRS énergie)
- Dynamhydrates (ADEME)
- SECOHYA (ANR)
- Stockage H₂ (DGA)
- Mixhyté (ADEME)
- Crisalhyd (ANR)