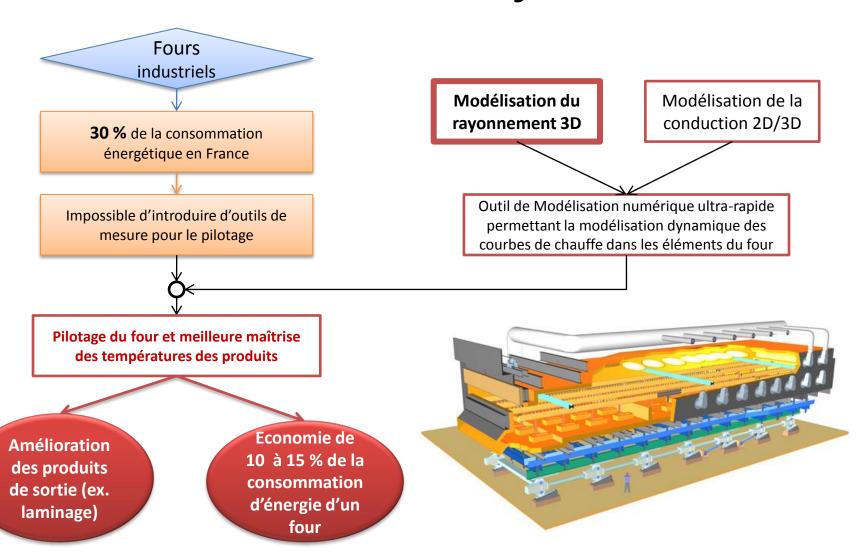
Modélisation dynamique des transferts radiatifs

Maroun NEMER
Boutros GHANNAM

MINES ParisTech – CEP SFT, Lyon – 28 janvier 2011

Contexte et objectifs



Plan

Introduction
Facteurs d'échanges génériques (GEF)
Méthode zonale à coefficients d'absorption multiples (MACZM)
Voxélisation
Facteurs d'échanges génériques partiels
 Réseaux de neurones
 Algorithme de droite discrète
Application : Four d'essais de réchauffage sidérurgique
 Comparaison avec la méthode des flux plan (précision et temps de calcul)
Accélération sur GPU
Conclusions et perspectives

Introduction

- ☐ La méthode zonale à coefficients d'absorption multiples (MACZM)
 - Modélisation des facteurs de transferts radiatifs directs en 3D
 - Méthode basée sur la géométrie discrète (volume discrétisé en voxels)
 - Simple et basée sur le principe de superposition de facteurs d'échanges génériques (GEF) partiels
 - Précise et rapide dans les milieux non-isothermes ou discontinus
 - Rapidité et précision améliorées par l'intégration de réseaux de neurones artificiels
 - Accélérée à l'aide des algorithmes de géométrie discrète
 - Calculs indépendants et parallélisables

Facteurs d'échanges génériques (GEF)

- Trois facteurs d'échanges génériques (GEF) sont définis:
 - GEF égal à la quantité de rayonnement échangée entre deux éléments de volume (voxels)

GEF Volume-Volume (gg)

Volume émetteur

Surface absorbante/émettrice

GEF égal à la quantité de rayonnement échangée entre un élément de volume et un élément de surface

GEF Volume-Volume (gs)

GEF égal à la quantité de rayonnement échangée entre deux éléments de surface

GEF Volume-Volume (ss)

Surface émettrice

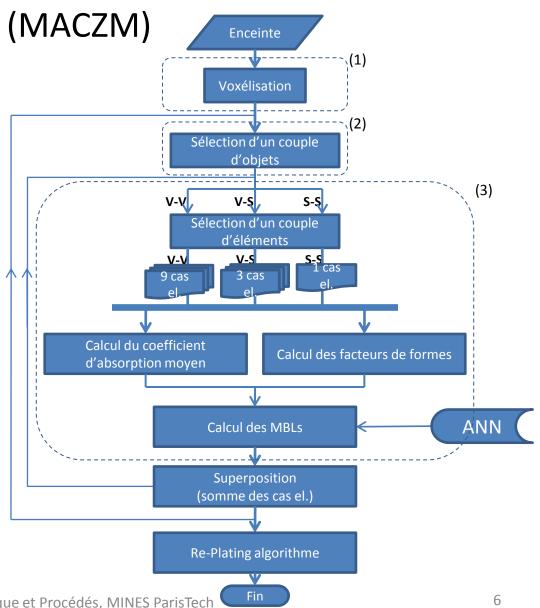
Surface absorbante

Volume absorbant

Méthode zonale à coefficients d'absorption multiples

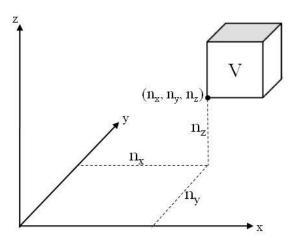
Trois Parties principales

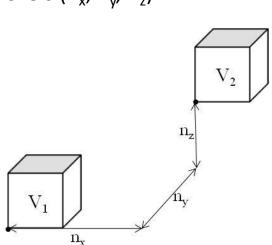
- Voxélisation et allocation des propriétés radiatives
- Application des réseaux de neurones et tracé de droites discrètes
- Superposition des facteurs d'échanges génériques (GEF)

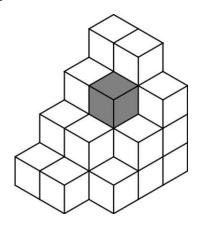


Voxélisation

- Voxélisation
 - Maillage cubique uniforme
 - Tout le volume de l'enceinte
- Repère
 - Cartésien orthogonal dans \mathbb{Z}^3 (adimensionnel)
 - Un voxel est repéré par son sommet inférieur gauche
 - Distances adimensionnelles entre deux voxels (n_x, n_y, n_z)







Facteurs d'échanges génériques partiels

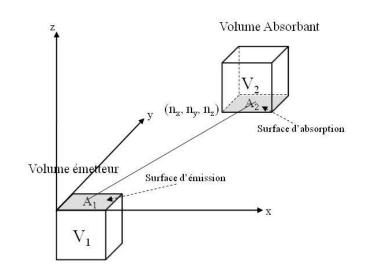
☐ GEF Volume - Volume partiels

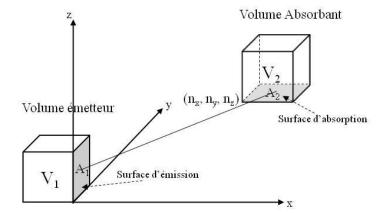
 GEF parallèle – échange à travers la surface supérieure du volume V₁ et la surface inférieure du volume V₂

$$\frac{(g_1g_2)_{pp}}{D^2} = F_{ggpp} (a_1D, a_2D, a_{m,zz}D, n_x, n_y, n_z)$$

 GEF perpendiculaire – échange à travers une surface latérale du volume
 V₁ et la surface inférieure du volume V₂

$$\frac{(g_1g_2)_{pd}}{D^2} = F_{ggpd}(a_1D, a_2D, a_{m,xz}D, n_x, n_y, n_z)$$

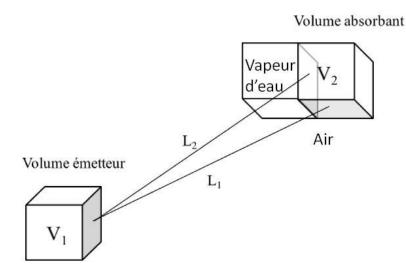




Il en existe sept autres, déduits de ceux-ci par des transformations géométriques

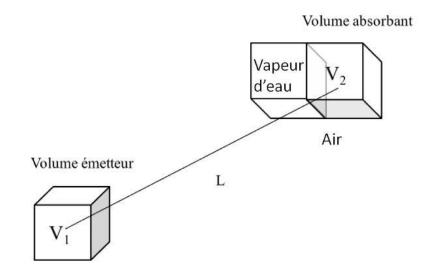
GEF partiels et précision

Avec GEF partiels



- ✓ Met en jeu plusieurs trajets entre les deux volumes
- ✓ Permet de prendre en considération la présence de discontinuités (ex. mélange air - vapeur d'eau)
- ✓ Plus précis dans le cas général

Sans GEF partiels



- ✓ Déduit par l'intermédiaire d'un seul trajet entre les deux volumes
- ✓ Non fiable en présence de discontinuités
- ✓ Moins précis dans le cas général

Longueurs Moyennes de Faisceau MBL

- ☐ Les MBL sont liés aux GEF par des fonctions 1D (MBL = longueur de trajet)
 - Longueur de trajet permettant de transmettre la même quantité de rayonnement entre deux surfaces dans le milieu considéré

MBL de transmission (L_t)

$$ss = F_{12,pp}(n_x, n_y, n_z)e^{-a_m L_{t,pp}}$$

MBL permettant d'avoir la même émissivité que le volume émetteur (voxel)

$$gs = F_{12,pp}(n_x, n_y, n_z)(1 - e^{-a_1 L_{em,pp}})e^{-a_m L_{t,pp}}$$

 MBL permettant d'avoir la même absorptivité que le volume absorbant (voxel)

MBL d'absorption (L_a)

$$gg = F_{12,pp}(n_x, n_y, n_z)(1 - e^{-a_2 L_{a,pp}})(1 - e^{-a_1 L_{em,pp}})e^{-a_m L_{t,pp}}$$

Réseaux de Neurones Artificiels

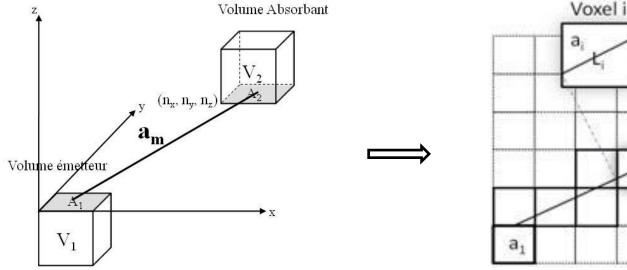
- ☐ Les réseaux de neurones sont générés pour déterminer les MBL
 - Par apprentissage à partir de valeurs numériques exactes (Yuen & Takara)
 - En gardant une erreur < 5 %. Des réseaux de neurones à deux couches sont utilisés
- Les réseaux de neurones permettent de calculer les valeurs normalisées des MBL
 - A partir des mêmes variables d'entrées normalisées
 - En prenant en compte des matrices 2D et une fonction log ou sigmoide

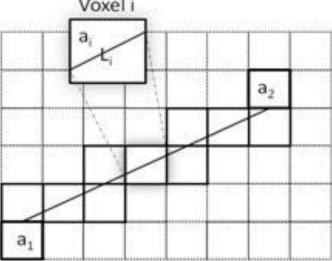
$$y = \sum_{i=1}^{N_l} \left\{ f\left[\left(\sum_{j=1}^{N_c} w_{1,ij} x_j\right) + b_{1,i}\right] \right\} + b_2, \quad \begin{cases} x_j = (a_1 D, a_2 D, a_m D, n_x, n_y, n_z) \\ f = fonction \log ou \text{ sigmoide} \\ y = \text{MBL } de \text{ sortie } normalis\'ee \\ w_{1,ij} = matrice \ 2D \\ b_{1,i} = vecteur \ 1D \\ b_2 = constante \end{cases}$$

Calcul du coefficient a_m

- A chaque GEF partiel correspond un a_m
 - Correspondant à l'absorptivité moyenne le long de la ligne de centre à centre entre les deux surfaces
 - a_m est proportionnel à l'inverse de la transmissivité moyenne

$$a_m = \sum_i a_i L_i$$
, $\begin{cases} a_i = coefficient \ d'absorption \ dans \ le \ voxel \ i \end{cases}$
 $\begin{cases} L_i = longueur \ de \ traversee \ de \ rayon \ dans \ le \ voxel \ i \end{cases}$

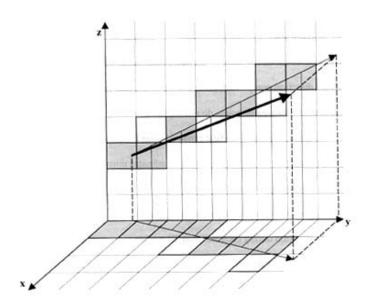


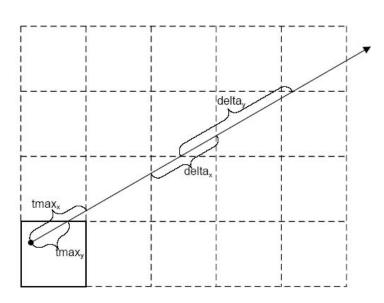


12

Algorithme de droite discrète

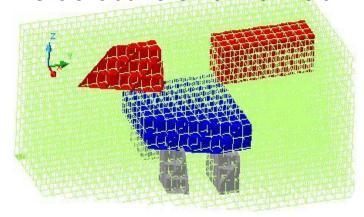
- ☐ Algorithme d'Amanatides en 3D
 - Permet d'identifier les voxels percés par une ligne de centre à centre
 - Permet le calcul facile de la longueur de traversée dans chaque voxel
 - Rapide et précis (droite 6-connexe)
 - Symétrique dans la programmation





Application

- ☐ Four d'essais de réchauffage sidérurgique
 - Enceinte (300 x 160 x 110 cm³)
 - Deux brûleurs sans flamme (100 x 28 x 28 cm³)
 - Une brame (100 x 100 x 22 cm³)
 - Quatre supports de brame
- Maillage pour MACZM
 - 300 x 160 x 110 voxels
 - Dimensions du voxel 10 x 10 x 10 cm³

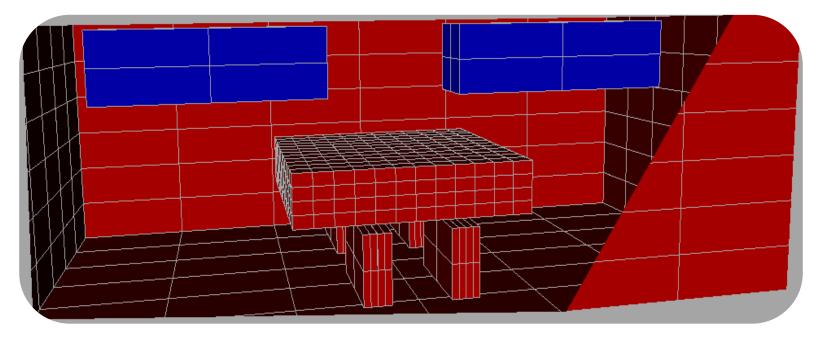


Vue externe du four

Vue interne du four

Modélisation du four par MODRAY

- ☐ MODRAY Approximation des Flux Plans en coordonnées cylindriques
 - Maillage surfacique
 - Trois cas de maillage sont considérés :
 - a. Brame 12x12x4, Enceinte 6x6x6, Brûleurs 2x2x2
 - b. Brame 6x6x2, Enceinte 4x4x4, Brûleurs 2x2x2
 - c. Brame 6x6x2, Enceinte 2x2x2, Brûleurs 2x2x2



Comparaison des résultats

■ MACZM

- Plus de cent fois plus rapide
- Même précision et validité

Comparaison MACZM – MODRAY					
Facteurs d'échanges directs	MACZM	MODRAY (a)	MODRAY (b)	MODRAY (c)	
[Temps de calcul]	[2 sec]	[25 min]	[6 - 7 min]	[2 min]	
Volume de combustion (1)-Volume de combustion (2)	1.13560 ^E -04	9.98015 ^E -05	1.18587 ^E -04	1.27992 ^E -02	
Volume de combustion (1) - Brame	1.03177 ^E -02	1.00157 ^E -02	9.76513 ^E -03	8.68062 ^E -02	
Volume de combustion(2) - Brame	1.04588 ^E -02	1.01281 ^E -02	9.95802 ^E -03	8.56366 ^E -02	
Support (1) – support (2)	3.28529 ^E -02	3.09024 ^E -02	3.08996 ^E -02	3.09022 ^E -02	

Accélération davantage de MACZM

- ☐ Parallélisation
 - Majorité du temps de calcul : calcul de a_m et application des réseaux de neurones
 - Ce calcul est indépendant pour chaque couple de voxels de tous les autres
- Programmation sur GPU (Graphics Processing Unit)
 - Architecture massivement parallèle « multi-core »
 - Environnement de développement simple disponible (CUDA); extension du C
 - Architecture mémoire compatible avec l'application
 - Utilisation de l'algorithme d'Amanatides « symétrique »
 - Accélération estimée à plus de 100 fois supérieure

Conclusions et perspectives

La méthode zonale à coefficients d'absorption multiples est implémentée
La méthode est efficace et rapide en milieux semi-transparents
La validité et la rapidité de la méthode sont démontrées dans la modélisation d'un four de réchauffage sidérurgique
La méthode est parallélisable. Un algorithme 100 fois plus rapide est exécutable sur GPU
La méthode peut être appliquée à des problèmes compliqués comme un mélange air / vapeur à haut température
La rapidité de la méthode la rend particulièrement utile pour la modélisation dynamique des systèmes impliquant des milieux semi-transparents.