

Les matériaux de type aérogels :

Des super-isolants thermiques nanostructurés

Arnaud RIGACCI

Ecole des Mines de Paris

Centre Energétique et Procédés (CEP) Equipe « Energétique, Matériaux et Procédés »

(Etablissement de Sophia Antipolis)

1. Introduction.

Matériaux nanostructurés et aérogels

2. Quelques rappels.

Principaux modes de transferts thermiques mis en jeu

3. Illustration.

Famille des aérogels de silice

Introduction (1) : Les matériaux nanostructurés légers (1)

Ι.

Des matériaux super-isolants dans les conditions « ambiantes »

Introduction (2) : Les matériaux nanostructurés légers (2)

De très faibles niveaux de conductivité sous vides primaires

Introduction (4) : Les aérogels (2)

Ι.

Une large « gamme » de compositions

De l'inorganique ... à l'organique ... en passant par les « hybrides »

Introduction (5) : Les aérogels (3)

1.

Des matériaux « légers », nanostructurés et nanoporeux

Transferts conductifs et radiatifs

Modèle parallèle découplé

(à températures « ambiantes »)

II. Transferts thermiques (2) : Conduction « solide » (1)

$$_{eq} = (1) , s' + g' + _{rad}$$

Influences « structurales »

Faible densité (i.e. très grande porosité)

Tortuosité « élevée »

Contacts particulaires nanométriques

II. Transferts thermiques (3) : Conduction « solide » (2)

Quelques représentations schématiques

II. Transferts thermiques (4) : Conduction « gazeuse »

$$_{eq} = (1) \quad ; '+ \cdot g' + _{rad}$$

J. Fricke, « Physical aspects of heat transfer and the development of thermal insulations » IEA, International Conference and workshop on « HiPTI – VIP », Zurich EMPA, 22-24/01/2001

Régime de Knudsen

$$_{g}' = \frac{1}{V_{ptot}} \cdot \frac{d_{max}}{d_{min}} - \frac{V}{d}(d) \cdot _{g}(d) \cdot d$$

II. Transferts thermiques (5) : Contribution radiative

$$_{eq} = (1)_{s'+} \cdot g' + _{rad}$$

R. Caps, J. Fricke, Int. J. of Solar Energy 3 (1984) 13-18

Modèle de Rosseland

$$_{rad} = \frac{16}{3} . n^2 . . \frac{T_r^3}{E()}$$

avec :

$$n = 1 + 0.25$$

(loi de Gladstone)

(f(z), fonction de Rosseland)

Transferts thermiques (6) : Conductivité thermique

П.

(Lawrence Livermore National laboratory)

II. Transferts thermiques (7) : Métrologie

• Méthodes stationnaires de type « plaque chaude » plutôt privilégiées

D. Büttner, R. Caps, J. Fricke **Thermal conductivity of evacuated transparent silica aerogel tiles,** High-Temperatures – High Pressures 17 (1985) 375-380

mais, ...

Mesures transitoires « comparables »

A. Rigacci, B. Ladevie, H. Sallée, Br. Chevalier, P. Achard, O. Fudym **Measurements of comparative apparent thermal conductivity of large monolithic silica aerogels for transparent sperinsulation applications,** High-Temperatures – High Pressures 34 (2002) 549-559

Propriétés thermiques des aérogels de silice

III. Aérogels de silice (1) : Influence de la densité (1)

Optimum « attendu » ...

E. Hümmer, X. Iu, T. Rettelbach, J. Fricke, Journal of Non-Crystalline Solids 145 (1992) 211-216

III. Aérogels de silice (2) : Influence de la densité (2)

A. Bisson,

« Synthèse et étude de matériaux nanostructurés à base de silice pour la superisolation thermique » Thèse Ecole des Mines de Paris (cofinancement ADEME/PCAS)

III. Aérogels de silice (3) : Influence de la mise en œuvre et du vide partiel (1)

Aérogels monolithiques

Aérogels divisés

III. Aérogels de silice (4) : Influence de la mise en œuvre et du vide partiel (2)

III. Aérogels de silice (5) : Influence de la granulométrie

D. Smith et al., JNCS, 225, (1998)

III. Aérogels de silice (6) : Influence de la température (1)

Collaboration ARMINES-CENERG / CSTB

III. Aérogels de silice (7) : Influence de la température (2)

S.Q. Zeng, A. Hunt, R. Greif, Journal of Non-Crystalline Solids 186 (1995) 2271-2277

III. Aérogels de silice (8) : Influence de la compression (1)

Moyens expérimentaux ARMINES/CEP + CEMEF

III. Aérogels de silice (9) : Influence de la compression (2)

III. Aérogels de silice (10) : Influence du liantage

Un exemple de liantage organique

Nanogel[™] / PVB (125 mW/m.K)

M. Schmidt et F. Schwertfeger, JNCS 225 (1998)

III. Aérogels de silice (11) : Applications envisagées (1)

Vitrage « aérogel »

U ~ 0.6 W/m_.K

III. Aérogels de silice (12) : Applications envisagées (2)

Matériau « de remplissage »

Convention ADEME/ARMINES/PCAS n°01.04.062

III. Aérogels de silice (13) : Applications envisagées (3)

Isolants en rouleaux (ou blankets)

Les matériaux de type aérogels :

Des super-isolants thermiques nanostructurés

Arnaud RIGACCI

Ecole des Mines de Paris Centre Energétique et Procédés (CEP) Equipe « Energétique, Matériaux et Procédés » (Etablissement de Sophia Antipolis)