

MODELISATION DES TRANSFERTS THERMIQUES AU SEIN DES SUPERISOLANTS NANOPOREUX

Franck ENGUEHARD (LR/DMAT/SCMF/LIMO) & Denis ROCHAIS (LR/DMAT/SRCC/LMC)

CONTEXTE DE LA MODELISATION

ced

Recherche de barrières thermiques très intenses :

résistance thermique (R = e / λ) de l'ordre du m².K/W pour une épaisseur caractéristique e de 10 mm

 \Rightarrow isolant thermique très performant : $\lambda \approx 5 \text{ mW/m/K}$

il existe une famille de matériaux produisant ce niveau de conductivité thermique : **matériaux microporeux** :

 $\lambda \approx$ quelques mW/m/K sous vide primaire de gaz

Objectifs de la modélisation:

- compréhension des transferts thermiques au sein de ces isolants
- aide à l'élaboration de ces matériaux

CARACTERISATION MICROSTRUCTURALE D'UN MATERIAU MICROPOREUX TYPE

nano-particules	: SiO ₂ amorphe - $\emptyset \approx 10$ nm - $\alpha_m = 83\%$ - $\alpha_v = 7\%$
micro-particules opacifiantes	: SiC cristallisé - $\mathbf{\emptyset} \approx 1 \mathbf{\mu} \mathbf{m}$ - $\alpha_{\rm m} = 12\%$ - $\alpha_{\rm v} = 1\%$
fibres	: cellulose amorphe - $\emptyset \approx 10 \ \mu m$ - L $\approx 1 \ mm$ - $\alpha_m = 5\%$ - $\alpha_v = 1\%$
porosité	: $\Pi = 91\%$ - Ø ≈ 100 nm à 1 µm - porosité ouverte
masse volumique apparente	: $\rho_a \approx 200 \text{ kg/m}^3$
conductivité thermique apparente	: sous air à 20°C à la P _a : λ _a ≈ 15 mW/m/K : sous vide primaire à 20°C : λ _a ≈ 5 mW/m/K

D. Rochais , CEA / Le Ripault, denis.rochais@cea.fr

rgamma

DESCRIPTION DE LA MICROSTRUCTURE DU MATERIAU A SES DEUX ECHELLES CARACTERISTIQUES

œ

Images MET (E. Bruneton SRCC/LMC)

MICROSTRUCTURE DU MATERIAU ET PHENOMENOLOGIE DES TRANSFERTS THERMIQUES SUSCEPTIBLES DE SE PRODUIRE EN SON SEIN

Pourquoi une telle performance d'isolation ?

échelle des micro-particules ($\approx 1 \ \mu m$) :

Hypothèses:

- rôle des micro-particules
- \rightarrow limiter le transfert radiatif
- dispersion en faible fraction volumique des micro-particules dans la matrice
 - \rightarrow conduction par les micro-particules faible
- conductivité thermique de la matrice très faible

échelle des nano-particules ($\approx 10 \text{ nm}$) :

Echange conductif

- Champ Proche
- Echange radiatif

Hypothèses:

- taille des nano-particules $\approx 10 \text{ nm}$
 - λ_{np} très faible
- influence de l'architecture et des zones de coalescence
- gaz confiné dans des inclusions de taille caractéristique ≈ 100 nm
 - $\rightarrow \lambda_{g}$ très faible
 - \rightarrow convection gazeuse négligeable

Convection gazeuse négligeable : critère de Rayleigh (1916)

 $\Delta T = 300$ K imposée aux extrémités d'une cavité fermée par 2 parois parallèles distantes de d = 3 mm

 \Rightarrow Ra \approx 70

 $\Rightarrow \Delta T = 0.01$ K imposée aux extrémités d'un pore de diamètre 100 nm

 \Rightarrow Ra $\approx 10^{-16}$

MODELISATION DU TRANSFERT CONDUCTIF Démarche de modélisation

œ

échelle des micro-particules ($\approx 1 \ \mu m$) :

- $\alpha_{v_{\mu p}}$ faible
- \rightarrow loi de mélange de type Maxwell :

$$\lambda_{e} = \lambda_{\mu p} \frac{\lambda_{m} + 2\lambda_{\mu p} + 2\alpha_{v_{m}}(\lambda_{m} - \lambda_{\mu p})}{\lambda_{m} + 2\lambda_{\mu p} - \alpha_{v_{m}}(\lambda_{m} - \lambda_{\mu p})}$$

 \rightarrow attention car

 $\alpha_{v_{\mu p}} \ll 1 \text{ mais } \lambda_{\mu p} \gg \lambda_m$

échelle des nano-particules (≈ 10 nm) :

 λ_{np} très faible : ?

Conductances thermiques d'échange entre 2 nano-particules hors ou en contact (influence de la zone de coalescence) : ?

génération d'architectures squelettiques 3-D de nano-particules coalescées : ≈ OK

$$\lambda_{g}$$
 très faible : OK

Conductivité thermique des nano-particules de silice et résistance thermique d'interface aux zones de coalescence

Étude de λ_{np} et R : - calculs de dynamique moléculaire (collaboration ENSMA/LET) - observations au MET de zones de coalescence (DMAT/SRCC/LMC)

Simulation par dynamique moléculaire de la conduction thermique dans les nanofibres de silice SiO₂ (G. Domingues & S. Volz, LET - ENSMA Poitiers) 1/2

<u>1^{ère} étape: détermination du potentiel d'intéraction adapté à la silice</u>

interactions Si-Si, Si-O et O-O:

→ potentiels BKS : U(r) = $\pm \frac{A}{r} - \frac{B}{r^6} + C \exp(-Dr)$

<u>2^{ème} étape</u>: mise en place du code de dynamique moléculaire utilisant ce potentiel pour déterminer les propriétés thermiques de la silice

<u>3^{ème} étape</u>: validation du code

=> calcul de la conductivité thermique de la silice massive pour les phases β -cristobalite (proche de la silice amorphe) et α -quartz (référencée dans la littérature)

Simulation par dynamique moléculaire de la conduction thermique dans les nanofibres de silice SiO₂ (G. Domingues & S. Volz, LET - ENSMA Poitiers) 2/2

<u>4^{ème} étape</u>: détermination des conductances thermiques d'échange entre 2 nanoparticules de silice hors ou en contact

G. Domingues, S. Volz, K. Joulain et J.-J. Greffet, J-B. Saulnier "Extraordinary Heat transfer Enhancement Between Two Nanoparticles Through Near Field Interaction", *Physical Review Letters*, accepté pour publication

Modèle de conduction thermique par différences finies

→ système linéaire dont la matrice est symétrique définie positive

→ utilisation d'un algorithme itératif de gradient conjugué (Fletcher & Reeves)

 \rightarrow simulation type plaque chaude gardée: détermination de la conductivité thermique apparente du domaine

 \rightarrow simulation type méthode flash arrière: détermination de la diffusivité thermique apparente du domaine

D. Rochais , CEA / Le Ripault, denis.rochais@cea.fr

Calcul du champ de température avec prise en compte d'une valeur non nulle de la conductivité thermique gazeuse - $\lambda_{np} = 1$ W/m/K

 $\lambda_{g} = 0,006 \text{ W/m/K} \rightarrow \lambda_{m} = 0,074 \text{ W/m/K}$

Application : dépendance des diffusivité et conductivité thermiques de la matrice vis-à-vis de la fraction volumique des nano-particules

loi de mélange de type Maxwell :

Etudes de base en homogénéisation

Confrontation simulation / mesures pour des matériaux types élastomères chargés

VALIDATION DE LA MODELISATION dispositifs expérimentaux SRCC/LMC 1/3

VALIDATION DE LA MODELISATION dispositifs expérimentaux SRCC/LMC 2/3

VALIDATION DU MODELE CONDUCTIF dispositifs expérimentaux SRCC/LMC 2/3

Mise en évidence de la sensibilité à différents paramètres

expériences sur un échantillon (Sté WACKER) {nano-particules SiO2 /micro-particules (TiO2 + FeO)} en fonction de P à 20°C

paramètres fixés :

paramètres identifiés :

TRAVAUX FUTURS

œ

- 1 évolution de la conductivité thermique d'une nanoparticule en fonction de son diamètre
- 2 détermination des propriétés de transport thermique de chaînes de nanoparticules coalescées
- 3 génération numérique d'architectures 3D de nanoparticules de silice coalescées
- 4 évaluation numérique de la conductivité thermique équivalente de ces architectures
- 5 évaluation numérique de la conductivité thermique effective d'un matériau nanoporeux (validation des lois de mélange)