

Thermographie infrarouge et conduction inverse : estimation d'une source surfacique

de chauffage par induction.

Aboubacar OUATTARA, Denis MAILLET, Michel GRADECK, Michel LEBOUCHE

Objectif : - influence composition fluide (fluide indus # eau du réseau)

refroidissement lors de la trempe de bande d'acier en sortie de laminoire

Etude : configuration statique

Défilement des bandes d'aciers en sortie de laminoir et refroidissement par jet

- **Comment?** chauffage par induction
 - mesure *T* face AR (TIR) \longrightarrow *T*, flux face AV (conduction inverse)
- **Nouveauté:** ébullition convective par chauffage par induction
 - mesure de température par TIR 600°C
- **Avantage:** pas de déplacement de pièce chaude
 - non intrusive

Inconvénients: - ϵ ?

- étalonnage de la caméra IR par corps noir

2 Phases

Mesure du champ de *Température en face arrière* _____ estimation chauffage (1)

(2) Mesure du champ de Température en face arrière et chauffage connu

estimation du flux de refroidissement

Configuration expérimentale

Figure1: Schéma du dispositif expérimentale

Phase1: Estimation du chauffage

Caméra:

1. Estimation émissivité

Loi d'étalonnage

$$DL^{\circ}(T, T_{boitier}) = DL^{*}(T) + eT_{boitier} + f$$

$$DL^{\circ}(T, T_{boitier}) = DL^{*}(T) + eT_{boitier} + f$$

$$DL^{*}(T) = Ae^{-B/T}$$

$$DL^{*}(T) = aT^{3} + bT^{2} + cT$$

$$DL^{*}(T) = aT^{3} + bT^{2} + cT$$

$$DL^{*}(T) = aT^{3} + bT^{2} + cT$$

$$DL^{*}(T_{envi}) = DL^{*}(T_{envi}) + eT_{boitier} + f$$

$$DL^{*}(T_{envi}) = DL^{*}(T_{envi}) = DL^{*}(T_{initial})$$

$$\varepsilon = \frac{DL_{\text{final}} - DL_{\text{initial}}}{DL^{\circ}(T_{\text{final}}, T_{\text{boitier}}) - DL_{\text{initial}}} \implies \varepsilon = 0.94$$

2. Mesure de température

$$DL^{*}(T) = \frac{DL - e T_{boitier} - f - (1 - \varepsilon) DL^{*}(T_{envi})}{\varepsilon}$$
$$DL^{*}(T) = Ae^{-B/T} \rightarrow T = f(DL^{*})$$

Estimation du chauffage

Inducteur 20kHz

Chauffage Nickel de diamètre 175 mm et d'épaisseur 5mm

<u>Figure3</u>: Photographie de la rondelle

Problème direct

NB : effet de peau \Rightarrow chauffage surfacique en z = 0

Axisymétrie du problème \Rightarrow simulation 1D entre 0 et R

$$q = \sum_{i=1}^{NFlux} q_i(r)$$
 avec les $q_i(r) = q_i G_i(r)$

des flux en créneaux définis sur l'intervalle r_i et r_{i+1}

$$\begin{array}{ccc} G_i(r) = 0 & \text{si} & r \notin [r_i, r_{i+1}[\\ \textbf{où} & G_i(r) = 1 & \text{si} & r \in [r_i, r_{i+1}[\end{array}] \end{array}$$

- échauffement par rapport à l'ambiante:

$$T = T^{absolu} (r, z, t) - T^{absolu} (r, z, t = 0)$$
$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial^2 T}{\partial r^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{a} \frac{\partial T}{\partial t}$$

$$-\lambda \frac{\partial T}{\partial z} = g(\mathbf{r}, \mathbf{t}) = q(\mathbf{r}) \mathbf{H}(\mathbf{t}) - h_{SUP}^{EQ} \cdot T \qquad \text{en } z = e$$

$$\frac{\partial T}{\partial r} = 0$$
 en $r = 0$ et $r = R$

$$-\lambda \ \frac{\partial T}{\partial z} = h_{INF}^{EQ} \cdot T \qquad \text{en } z = 0 \qquad T = 0 \ \dot{a} \quad t = 0$$

Hypothèses: puissance absorbée indépendante du niveau de température:

- travail à moins de 100°C pour son estimation
- modèle linéaire utilisé: linéarisation des pertes convectives et radiatives.

$$\overline{T}_{Film} = \frac{T_{\infty} + T}{2} \qquad \overline{T} = \frac{T_{\infty} + T_{max}}{2} \qquad \text{avec } \alpha = SUP, INF \qquad h_{\alpha}^{EQ} = h_{\alpha}(\overline{T}_{FILM}) + 4\sigma \varepsilon_{SUP} \overline{T}_{FILM}^{3}$$
$$et \qquad h_{LAT}^{Eq} = 0$$

$$h_{SUP}^{EQ} = 10.4 \ W.m^{-2}K^{-1}$$
 $h_{NF}^{EQ} = 5.1 \ W.m^{-2}K^{-1}$

Double transformée Laplace (t) – Hankel (r) de l'équation de la chaleur:

$$\overline{T}(r,z,p) = \int_{0}^{\infty} T(r,z,t) e^{-pt} dt \qquad \widetilde{T}_{n}(z,p) = \int_{0}^{R} \overline{T}(r,z,p) r J_{0}(\alpha_{n}r) dr$$
avec
$$\alpha_{n} = \frac{u_{n}}{R} \qquad u_{n} \text{ solutions de } J_{1}(u) = 0$$

n:
$$\frac{\partial \overline{T}_n^2}{\partial z} - (\alpha_n^2 + \frac{p}{a})\overline{T}_n = 0 \quad \text{avec} \quad u_n \approx n\pi + \frac{\pi}{4} - \frac{3}{8(n\pi + \frac{\pi}{4})}$$

- après transformation

$$\widetilde{\overline{T}}_{n}(z=e)=\overline{Z}_{n}(p)\,\widetilde{q}_{n}\,/\,p$$

Avec:
$$\overline{Z}_{n}(\rho) = \frac{1}{((h_{SUP}^{EQ} + h_{INF}^{EQ})\cosh(\gamma_{n}e) + \frac{h_{SUP}^{EQ} \cdot h_{INF}^{EQ}}{\lambda \gamma_{n}}\sinh(\gamma_{n}e) + \lambda \gamma_{n}\sinh(\gamma_{n}e))}$$

impédance

$$\widetilde{q}_{n} = \sum_{i=1}^{NFlux} \int_{0}^{R} q_{i}(r) r_{i} J_{0}(\alpha_{n} r_{i}) dr_{i} = \sum_{i=1}^{NFlux} \int_{r_{i}}^{r_{i+1}} q_{i} G_{i}(r) r J_{0}(\alpha_{n} r) dr$$

$$\widetilde{q}_n = \sum_{i=1}^{NFlux} \frac{q_i}{\alpha_n} \left[r_{i+1} J_1(\alpha_n r_{i+1}) - r_i J_1(\alpha_n r_i) \right] = \sum_{i=1}^{NFlux} q_i \widetilde{G}_{in}$$

En revenant dans l'espace temporel, par transformée inverse :

$$\widetilde{T}_n(z=e,t)=\widetilde{q}_n L^{-1}(\overline{W}_n(p))$$

Problème inverse

T(r,t) expérimentale est mesurée en face avant par la caméra (z = e)

Estimation des flux méthode moindres carrés ordinaires avec densité de flux de chauffage en escaliers

$$T(r,t) = \frac{2}{R^2} \sum_{n=0}^{\infty} \widetilde{T}_n(t) \frac{J_0(\alpha_n r)}{J_0^2(\alpha_n R)} \quad \text{avec} \qquad \widetilde{T}_n(t) = W_n(t) \, \widetilde{q}_n$$

$$T(r,t) = \frac{2}{R^2} \sum_{n=0}^{Nh} \frac{J_0(\alpha_n r)}{J_0^2(\alpha_n R)} W_n(t) \widetilde{q}_n \quad \text{avec} \qquad \widetilde{q}_n = \sum_{i=1}^{NFlux} q_i \ \widetilde{G}_{in}$$

$$\Rightarrow T(r,t) = \sum_{i=1}^{NFlux} \left[\frac{2}{R^2} \sum_{n=0}^{Nh} \left(\frac{J_0(\alpha_n r)}{J_0^2(\alpha_n R)} G_{in} \right) W_n(t) \right] q_i$$

Matrice des sensibilités

$$\Rightarrow \begin{pmatrix} T(r_0, t_k) \\ \cdot \\ \cdot \\ T(r_j, t_k) \\ \cdot \\ \cdot \\ \cdot \\ T(r_{Nr}, t_k) \end{pmatrix} = \begin{bmatrix} X_{ji}(t_k) \end{bmatrix} \begin{pmatrix} q_1 \\ \cdot \\ \cdot \\ q_i \\ \cdot \\ \cdot \\ T(t_{Nr}) \end{pmatrix} \quad \text{ou} \quad T = \begin{pmatrix} T(t_1) \\ T(t_2) \\ \cdot \\ \cdot \\ T(t_{Nt}) \end{pmatrix} = \begin{bmatrix} X(t_1) \\ X(t_2) \\ \cdot \\ \cdot \\ X(t_{Nt}) \end{bmatrix} q \quad (3.d)$$

 $\Rightarrow T(t_k) = X(t_k) q \qquad q = \begin{bmatrix} q_1 & q_2 & \cdots & q_{Nt} \end{bmatrix}^T$ (3.e)

$$\Rightarrow \quad T = X q \tag{3.f}$$

$$\Rightarrow \hat{q} = (X^{t}X)^{-1}X^{t}T$$
(3.g)

Simulation du modèle

2 cas tests à P = 20 W

3 Créneau de flux

Figure 4: Profils de température et densité de Flux estimé avec un bruit d'écart type = 0.02°C

5 Créneau de flux

Profil de temperature face arriere

Figure 5: Profils de température et densité de Flux estimé avec un bruit d'écart type = 0.02°C

Image de la rondelle de Nickel donnée par la caméra

<u>Figure5</u>: Image thermographique de la rondelle

Calcul du nombre de points en rayon

 \bullet 36947 points \longrightarrow 3228 points utiles

Trame de 200 par 200 pixels utiles

Profil de température

Profil de température au temps final tf = 199 (dernière image) corrigé par rapport à

Figure6: Profil de température corrigée par rapport à la température initiale

Densité de flux de chauffage estimé

Figure7: Densités de flux estimé

$$\sigma_{\hat{q}_i} = \sigma \left\{ \left[\left(\boldsymbol{X}^T \, \boldsymbol{X} \right)^{-1} \right]_{ii} \right\}^{1/2} \text{ avec } \sigma = 0.02^{\circ} \text{C}$$
$$\hat{\boldsymbol{q}} = \left(\boldsymbol{X}^T \, \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \, \boldsymbol{T}_{\text{exp}} \implies \operatorname{cov}(\hat{\boldsymbol{q}}) = \sigma^2 \, \left(\boldsymbol{X}^T \, \boldsymbol{X} \right)^{-1}$$

Densité de flux de chauffage estimé

Conclusion et perspectives

- Résultats exploratoires
- Problèmes:
- T initiale
- Thermocouple intrusif, émissivité non uniforme
- Disque excentré

Perspectives:

- Mesures haute température
- Estimation du flux de refroidissement

Merci de votre attention!!!