œ

Détermination expérimentale et modélisation des propriétés radiatives de matrices nanoporeuses de silice - Pistes d'amélioration

Sylvain LALLICH

Journées d'étude en Rayonnement Thermique

Journée SFT - 25/26 Mars 2010

Plan de l'exposé

- Présentation du matériau
 - Les super-isolants: composition et performances
 - Problématique
 - Matériau d'étude
- Caractérisation et inversion de l'ETR
- Modélisation des propriétés radiatives à l'aide de la théorie de Mie
- Modélisation des propriétés radiatives avec l'approximation dipolaire discrète

• Pistes d'amélioration

Matrice nanoporeuse de silice

CETHIL

ETHIL

 Matrice nanoporeuse de silice ⇒ Tortuosité du chemin de percolation, diamètre des pores ≈ 100 nm (inhibe la convection et la conduction gazeuses)

M. G. Kaganer. Thermal insulation in cryogenic engineering. Israel program for scientific translations, Jerusalem, 1969

- Matrice nanoporeuse de silice

- Matrice nanoporeuse de silice
- Particules micrométriques
- Fibres ⇒ Tenue mécanique

ETHIL

Problématique

- $\land \Lambda_{\rm solide} \approx 3 \, {\rm mW.m^{-1}.K^{-1}}$
- $\land \Lambda_{\rm rad} \approx 1.5 6 \, {\rm mW.m^{-1}.K^{-1}}$
- \Rightarrow Dès T_{ambiante}, transfert radiatif $\approx 30 60\%$

- Plage de λ utile:
 - \triangleright à 300K: 5 50 μ m
 - ▷ à 1000K: 1.4 14 µm

Peu de travaux à l'échelle de la matrice +

"Importance" du transfert radiatif

Transfert radiatif au sein des matrices nanoporeuses de silice

Matériau étudié

Caractéristiques des échantillons:

Matériau étudié

- \diamond diamètre : 25 mm
- \diamond épaisseur : comprise entre 2 et 10 mm
- \diamondsuit densité : ~ 0.3

Matériau étudié

- \diamond diamètre : 25 mm
- \diamond épaisseur : comprise entre 2 et 10 mm

Poudres utilisées : silice pyrogénée hydrophile

 \diamondsuit densité : ~ 0.3

Caractéristiques des poudres

4

		Waker	Cabosil	Aerosil
œ		HDK-T30	EH5	COK84
	Nature	$100\% \operatorname{SiO}_2$	$100\%{ m SiO}_2$	$84\% { m SiO}_2, \ 16\% { m Al}_2 { m O}_3$
Centre de Thermique de Lyon CETHIL UMR 5008	d_{part}	9 nm	$7\mathrm{nm}$	14.5 nm
	S_{spe}	$300 \mathrm{m^2.gr^{-1}}$	$380 \mathrm{m^2.gr^{-1}}$	$175 {\rm m}^2.{ m gr}^{-1}$
	d _{agg}	$120\mathrm{nm}$	$200 - 300 \mathrm{nm}$	n.c.
194	Silanols	$2\mathrm{nm}^{-2}$	$4 - 5 \rm{nm}^{-2}$	n.c.
192	$f_{v \ eau}$	3.9%	9%	

Plan de l'exposé

- Présentation du matériau
- Caractérisation et inversion de l'ETR
 - Caractérisations
 - Inversion de l'ETR Hypothèses
 - Propriétés radiatives obtenues
- Modélisation des propriétés radiatives à l'aide de la théorie de Mie
- Modélisation des propriétés radiatives avec l'approximation dipolaire discrète

• Pistes d'amélioration

Caractérisation par spectrométrie

- Utilisation de 2 spectromètres:
- ▷ Varian Cary \Rightarrow bande de travail $[0.25 \, \mu m; 2.5 \, \mu m]$
- ▷ Brucker IFS66V \Rightarrow bande de travail $[1.6 \, \mu m; 20 \, \mu m]$
 - Grandeurs d'intérêt: transmittance et réflectance directionnelles-hémisphériques
 - Tentative de transmittance directionnelle-directionnelle

Caractérisation par spectrométrie

- Milieu homogène semi-transparent
- Géométrie cartésienne 1D avec symétrie azimutale
- Milieu absorbant
- Milieu diffusant
- Milieu non émettant

Sous ces hypothèses, l'ETR devient :

 $\frac{\mu}{\beta_{\lambda}}\frac{\partial L_{\lambda}\left(z,\mu\right)}{\partial z} + L_{\lambda}\left(z,\mu\right) = \frac{\omega_{\lambda}}{2}\int_{-1}^{1}\phi_{\lambda}\left(\mu,\mu'\right)L_{\lambda}\left(z,\mu'\right)d\mu'$

Sous ces hypothèses, l'ETR devient :

$$\frac{\mu}{\beta_{\lambda}}\frac{\partial L_{\lambda}\left(z,\mu\right)}{\partial z} + L_{\lambda}\left(z,\mu\right) = \frac{\omega_{\lambda}}{2}\int_{-1}^{1}\phi_{\lambda}\left(\mu,\mu'\right)L_{\lambda}\left(z,\mu'\right)d\mu'$$

Centre de Thermique de Lyon CETHIL UMR 5000

Conditions aux limites de types frontières transparentes

Sous ces hypothèses, l'ETR devient :

$$\frac{\mu}{\beta_{\lambda}}\frac{\partial L_{\lambda}\left(z,\mu\right)}{\partial z} + L_{\lambda}\left(z,\mu\right) = \frac{\omega_{\lambda}}{2}\int_{-1}^{1}\phi_{\lambda}\left(\mu,\mu'\right)L_{\lambda}\left(z,\mu'\right)d\mu'$$

Centre de Thermique de Lyon CETHIL UMR 5000

Conditions aux limites de types frontières transparentes

$$T_{\lambda}^{d-h} = \frac{2\pi \int_{0}^{1} L_{\lambda}(e,\mu) \,\mu \,d\mu}{2\pi \int_{0}^{1} L_{\lambda}(0,\mu) \,\mu \,d\mu} \qquad R_{\lambda}^{d-h} = -\frac{2\pi \int_{-1}^{0} L_{\lambda}(0,\mu) \,\mu \,d\mu}{2\pi \int_{0}^{1} L_{\lambda}(0,\mu) \,\mu \,d\mu}$$

Propriétés radiatives obtenues

Propriétés radiatives obtenues

Plan de l'exposé

- Présentation du matériau
- Caractérisation et inversion de l'ETR
- Modélisation des propriétés radiatives à l'aide de la théorie de Mie
 - 1ers résultats
 - Détermination de la f_v d'eau
 - Prise en compte de la dépendance
 - Recherche d'un diamètre effectif

- Modélisation des propriétés radiatives avec l'approximation dipolaire discrète
- Pistes d'amélioration

Résultats de Mie

Détermination de la f_v d'eau

Détermination de la f_v d'eau

Spectres de Mie

- Fraction volumique de nos échantillons: 0.14
- Paramètre de taille des particules: $0.17 \ge x \ge 1.5 \cdot 10^{-3}$

- Fraction volumique de nos échantillons: 0.14
- Paramètre de taille des particules: $0.17 \ge x \ge 1.5 \cdot 10^{-3}$

- Corrélations applicables:
 - ▷ Modèle de Chu et al., IJHMT 31, 1988
 - Modèle de Kumar et Tien, Journal of Heat Transfer, 112, 1990
 - Modèle de Prasher, Journal of Applied Physics, 102, 2007

Recherche d'un diamètre effectif

Recherche d'un diamètre effectif

Plan de l'exposé

- Présentation du matériau
- Caractérisation et inversion de l'ETR
- Modélisation des propriétés radiatives à l'aide de la théorie de Mie
- Modélisation des propriétés radiatives avec l'approximation dipolaire discrète
 - Principe
 - Modélisation de la structure
 - Résultats obtenus

Pistes d'amélioration

L'Approximation Dipolaire Discrète

 Approximation d'un objet diffusant par N dipôles oscillants de polarisabilité α

$$\mathbf{P}_{j} = \alpha_{j} \mathbf{E}_{\mathbf{loc},j}$$
$$= \alpha_{j} \left[\mathbf{E}_{\mathbf{inc},j} + \sum_{k \neq j} \left[\mathbf{A} \left(\mathbf{r}_{j} - \mathbf{r}_{k} \right) \right] \mathbf{P}_{k} \right]$$

 $A_{j,k}$

ETHIL

$$= \frac{1}{4\pi\varepsilon_0} \frac{\exp\left(i\,k\,r_{jk}\right)}{r_{jk}}$$
$$\left\{ k^2 \left(\mathbb{I}_3 - \tilde{\mathbf{r}}_{jk}\tilde{\mathbf{r}}_{jk}\right) + \frac{1 - i\,kr_{jk}}{r_{jk}^2} \left[3\,\tilde{\mathbf{r}}_{jk}\tilde{\mathbf{r}}_{jk} - \mathbb{I}_3\right] \right\}$$

L'Approximation Dipolaire Discrète

 Approximation d'un objet diffusant par N dipôles oscillants de polarisabilité α

$$\mathbf{P}_{j} = \alpha_{j} \mathbf{E}_{\mathbf{loc},j}$$
$$= \alpha_{j} \left[\mathbf{E}_{\mathbf{inc},j} + \sum_{k \neq j} \left[\mathbf{A} \left(\mathbf{r}_{j} - \mathbf{r}_{k} \right) \right] \mathbf{P}_{k} \right]$$

⇒ Système linéaire à 3N inconnues complexes

 $\widetilde{\mathbf{A}}\widetilde{\mathbf{P}}=\widetilde{\mathbf{E}}$

Positionnement des dipôles

- Surface spécifique
- Dimension fractale (caractéristique de l'organisation structurale)
- Concernant la dimension fractale

$$\mathcal{N} = k_f \left(\frac{R_g}{a}\right)^{D_f}$$

 Dans la littérature: grande variété de valeurs comprises entre 1.7* et 2.6[†]

*: Ehrburger et Jullien, Studies of surface science and catalysis, p.441-449, 1988 †: Freltoft *et al.*, Phys. Rev. B, 33(1), p.269-275, 1986

- Algorithmes disponibles dans la littérature:
 - Algorithmes à base de mouvement diffusif pour les particules/agrégats
 - Algorithmes à base de mouvement ballistique pour les particules/agrégats
 - Algorithmes de génération pseudo-aléatoires

- Algorithmes disponibles dans la littérature:
 - Algorithmes à base de mouvement diffusif pour les particules/agrégats
 - Algorithmes à base de mouvement ballistique pour les particules/agrégats
 - Algorithmes de génération pseudo-aléatoires
 - Doit être "représentatif" des conditions de fabrication

- Algorithmes disponibles dans la littérature:
 - Algorithmes à base de mouvement diffusif pour les particules/agrégats
 - Algorithmes à base de mouvement ballistique pour les particules/agrégats
 - Algorithmes de génération pseudo-aléatoires
- Doit être "représentatif" des conditions de fabrication

- Choix du mouvement diffusif à priori
 - Agrégation cluster-cluster limitée par diffusion (DLCCA) $\Rightarrow k_f \sim 1.1, D_f \sim 1.8$
 - Agrégation particules-cluster limitée par diffusion (DLA) \Rightarrow k_f \sim 0.7, D_f \sim 2.5

Sorensen & Roberts, Journal of Colloids and Interface Science 186, 447-452 (1997)

- Diamètre des particules: 9 nm
- Volume de matière contenu dans l'agrégat équivalent à celui contenu dans une sphère dense de 40 nm
- Agrégat constitué de 90 nanoparticules

Résultats obtenus sur ces structures

Plan de l'exposé

- Présentation du matériau
- Caractérisation et inversion de l'ETR
- Modélisation des propriétés radiatives à l'aide de la théorie de Mie
- Modélisation des propriétés radiatives avec l'approximation dipolaire discrète
- Pistes d'amélioration

- Détermination de l'indice du matériau réel
- k: à partir de $\alpha_{\lambda} = \alpha_{\lambda}^{0} \cdot (1-p)$

$$k_{\lambda} = \frac{\lambda \, \alpha_{\lambda}^0}{4\pi}$$

 n: à partir de la relation de Kramers-Kronig

Perspectives

- Centre de Thermique de Lyon CETHIL UMR 5008

- Généraliser les observations faites sur des échantillons à base d'autres silices
- Observation des zones d'absorption?
- Echantillon très dense

 Indice optique complexe (ellipsométrie? KK?)
- Mesures après "séchage" de l'échantillon
- Comprendre le comportement diffusion dépendante

Dépendance dans les milieux particulaires

- Retrouver les corrélations de dépendance à l'aide de la DDA
- Cas expérimental simple:
 - Particules latex dans de l'eau: $n_{rel} = 1.588/1.332$
 - Diamètre: $0.08 \ \mu m$
 - Eclairement: $\lambda = 0.6328 \ \mu m$
- Milieu équivalent constitué de 1330 particules
- Grandeur d'intérêt: $Rq = \frac{Q_{sca}^{dep}}{Q_{sca}^{Mie}}$

Dépendance dans les milieux particulaires

Dépendance dans les milieux particulaires

