INSTITUT

Application d'une méthode de type 'meshless' à la résolution de problèmes de transferts radiatifs

C.A. Wang, H. Sadat, V. LeDez, D. Lemonnier

Institut P' • UPR CNRS 3346 SP2MI • Téléport 2 Boulevard Marie et Pierre Curie • BP 30179 F86962 FUTUROSCOPE CHASSENEUIL Cedex

Discretisation

Avec maillage

Sans maillage

· · · · · · · · · · · · · · · · · · ·	
·····	
· · · · · · · · · · · · · · · · · · ·	

Construction du nuage de points: mailleurs, tir aléatoire, reconstruction de volumes..

Interface d'une surface catalytique

Approximation Diffuse Approximation glissante à moindres carrés

$$\varphi_{i}^{*}(x_{i},y_{i}) = \varphi + (x_{i}-x)\frac{\partial\varphi}{\partial x} + (y_{i}-y)\frac{\partial\varphi}{\partial y} + \frac{(x_{i}-x)^{2}}{2!}\frac{\partial^{2}\varphi}{\partial x^{2}} + (x_{i}-x)(y_{i}-y)\frac{\partial^{2}\varphi}{\partial x\partial y} + \frac{(y_{i}-y)^{2}}{2!}\frac{\partial^{2}\varphi}{\partial y^{2}} + O(p^{2})$$

$$\varphi_{i}^{*}(x_{i},y_{i}) = \langle p(M_{i},M) \rangle \langle \alpha_{M} \rangle^{T}$$

$$\left\langle p(\mathbf{M}\mathbf{i},\mathbf{M}) \right\rangle = \left\langle 1, (\mathbf{x}\mathbf{i}-\mathbf{x})(\mathbf{y}\mathbf{i}-\mathbf{y})(\mathbf{x}\mathbf{i}-\mathbf{x})^{2}, (\mathbf{x}\mathbf{i}-\mathbf{x})(\mathbf{y}\mathbf{i}-\mathbf{y})(\mathbf{y}\mathbf{i}-\mathbf{y})^{2} \right\rangle$$

$$\left\langle \alpha_{\mathbf{M}} \right\rangle^{\mathrm{T}} = \left\langle \varphi(\mathbf{x},\mathbf{y})^{*}, \left(\frac{\partial\varphi}{\partial \mathbf{x}}\right)^{*}, \left(\frac{\partial\varphi}{\partial \mathbf{y}}\right)^{*}, \frac{1}{2!} \left(\frac{\partial^{2}\varphi}{\partial \mathbf{x}^{2}}\right)^{*}, \left(\frac{\partial^{2}\varphi}{\partial \mathbf{x}\partial \mathbf{y}}\right)^{*}, \frac{1}{2!} \left(\frac{\partial^{2}\varphi}{\partial \mathbf{y}^{2}}\right)^{*} \right\rangle^{\mathrm{T}}$$

Erreur Quadratique – Fonction De Pondération

$$I(\alpha_{M}) = \sum_{M, j \in \mathcal{V}^{M}} \left\{ \omega(M_{j}, M) \left[\varphi_{j} - \langle p(M_{j}, M) \rangle \langle \alpha_{M} \rangle^{T} \right] \right\}$$

ω(M_i,M) : fonction de pondération définie sur un support borné

- support de la fonction de pondération
- \times point ou noeud de calcul M
- + noeud
- \rightarrow connection au noeud de calcul
 - ensemble des voisins v^{M}

Fonction de Gauss:

$$\omega(M_j, M) = \exp\left[-3\ln(10) \cdot \left(\frac{r}{\sigma}\right)^2\right]$$
$$\omega(M_j, M) = 0 \quad \text{si } r > \sigma^2$$

Expression Des Dérivées Partielles

Minimisation de l'erreur quadratique :

$$\frac{\partial I(\alpha_M)}{\partial \alpha_i} = 0$$
 $i=0,\dots,5$

Expression Des Dérivées Partielles

$$\begin{bmatrix} A^{M} \end{bmatrix} \sum_{M_{j} \in v^{M}} (M_{j}, M) \begin{bmatrix} 1 & x_{j} & y_{j} & x_{j}^{2} & x_{j} \cdot y_{j} & y_{j}^{2} \\ x_{j} & x_{j}^{2} & x_{j} \cdot y_{j} & x_{j}^{3} & x_{j}^{2} \cdot y_{j} x_{j} \cdot y_{j}^{2} \\ y_{j} & x_{j} \cdot y_{j} & y_{j}^{2} & x_{j}^{2} \cdot y_{j} x_{j} \cdot y_{j}^{2} & y_{j}^{3} \\ x_{j}^{2} & x_{j}^{3} & x_{j}^{2} \cdot y_{j} & x_{j}^{4} & x_{j}^{3} \cdot y_{j} x_{j}^{2} \cdot y_{j}^{2} \\ x_{j} \cdot y_{j} x_{j}^{2} \cdot y_{j} x_{j} \cdot y_{j}^{2} & x_{j}^{3} \cdot y_{j} x_{j}^{2} \cdot y_{j}^{2} x_{j} \cdot y_{j}^{3} \\ y_{j}^{2} & x_{j} \cdot y_{j}^{2} & y_{j}^{3} & x_{j}^{2} \cdot y_{j}^{2} x_{j} \cdot y_{j}^{3} & y_{j}^{4} \end{bmatrix}$$

2D : Matrice 6×6

 $<a_i>$: i^{ème} ligne de la matrice [A^M]⁻¹ $<p_i> = <p(M_i,M)>$

$$\frac{\partial^2 \varphi}{\partial x^2} = 2! \sum_{M,j \in \mathcal{V}^M} (M_j, M) (a_4) (p_j)^T \varphi_j$$

$$\frac{\partial \varphi}{\partial y} = \sum_{M \neq \in U^{M}} (M_{j}, M) (a_{3}) \langle p_{j} \rangle^{T} \varphi_{j}$$

 a_i : i^{ème} ligne de la matrice [A^M]⁻¹

 $<p_{j}> = <p(M_{j},M)>$

$$\frac{\partial \varphi}{\partial y} = \sum_{M_j \in \mathcal{U}^M} (M_j, M) (a_3) \langle p_j \rangle^T \varphi_j$$

$$\frac{\partial^2 \varphi}{\partial x^2} = 2! \sum_{M \neq \psi} (M_{j}, M) (a_4) (p_j)^T \varphi_j$$

Méthode S_N

ETR (Variables primaires)

$$\frac{dI(\Omega_i)}{ds} = -\beta I(\Omega_i) + \kappa I_b + \frac{\sigma}{4\pi} \sum_{j=1}^J I(\Omega'_j) \Phi(\Omega'_j, \Omega_i) W(\Omega'_j)$$

ETR (Variables Secondaires: Flux pairs)

 $F(\Omega) = I^{+}(\Omega) + I^{-}(\Omega) \qquad \qquad G(\Omega) = I^{+}(\Omega) - I^{-}(\Omega)$

$$\frac{1}{\beta} \frac{d^2 F_i}{ds^2} - \beta F_i + \kappa I_b + \frac{\sigma}{4\pi} \sum_{j=1}^{J/2} (A_{ij} F_j + B_{ij} G_j) = 0$$
$$\frac{\partial F_i(P, \vec{\Omega})}{\partial s_m} + \beta G_i(P, \vec{\Omega}) = 0$$

Remarque: Autre formulation du second ordre possible

Flux pairs _____ Equilibre radiatif et problèmes couplés

Equilibre radiatif dans une enceinte hexahédrique

Flux sur la ligne AA

Equilibre radiatif dans une enceinte en forme de "L"

Flux sur la ligne BB

Journal Heat Transfer, 1996 14

Couplage Conduction-Rayonnement

Milieu semi-transparent cylindrique

Base à Tc, les autres parois à T_f avec Tf/Tc=0.5

Effet du nombre de Planck

 $Pr=(\lambda\beta)/(4\sigma T_{ref}^3)$

Isothermes dans le plan y=0

Milieu semi-transparent cylindrique

 $Pr=(\lambda\beta)/(4\sigma T_{ref}^3)$

Couplage Convection-Rayonnement

Algorithme de Projection (P-V) ou Formulation Vitesse-Vorticité

+

Méthode des Flux pairs

Cavité différentiellement chauffée à Ra=2. 10⁸

Bifurcation à un régime pseudo périodique

Couplage Convection-Rayonnement

Cavité avec generation interne de puissance

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \nabla^2 T - \frac{1}{Pl} \cdot \frac{1}{\Delta T} \cdot \frac{divq_r}{4\sigma T_{ref}^3} + \frac{Ra^T}{Ra}$$

Equations de Poisson pour la vitesse

$$\nabla^2 u = -\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z}$$

$$\nabla^2 v = -\frac{\partial \xi}{\partial z} + \frac{\partial \xi}{\partial x}$$

$$\nabla^2 w = -\frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y}$$

Equations de transport de la vorticité

$$\frac{\partial\xi}{\partial t} + u\frac{\partial\xi}{\partial x} + v\frac{\partial\xi}{\partial y} + w\frac{\partial\xi}{\partial z} = \xi\frac{\partial u}{\partial x} + \eta\frac{\partial u}{\partial y} + \zeta\frac{\partial u}{\partial z} + Pr\nabla^{2}\xi + RaPr\cos\phi(\frac{\partial T}{\partial y})$$
$$\frac{\partial\eta}{\partial t} + u\frac{\partial\eta}{\partial x} + v\frac{\partial\eta}{\partial y} + w\frac{\partial\eta}{\partial z} = \xi\frac{\partial v}{\partial x} + \eta\frac{\partial v}{\partial y} + \zeta\frac{\partial v}{\partial z} + Pr\nabla^{2}\eta + RaPr(\sin\phi\frac{\partial T}{\partial z} - \cos\phi\frac{\partial T}{\partial x})$$
$$\frac{\partial\xi}{\partial t} + u\frac{\partial\xi}{\partial x} + v\frac{\partial\xi}{\partial y} + w\frac{\partial\xi}{\partial z} = \xi\frac{\partial w}{\partial x} + \eta\frac{\partial w}{\partial y} + \zeta\frac{\partial w}{\partial z} + Pr\nabla^{2}\zeta - RaPr\sin\phi(\frac{\partial T}{\partial y})$$

Equation de l'énergie

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \nabla^2 T - \frac{1}{Pl} \cdot \frac{1}{\Delta T} \cdot \frac{div q_r}{4\sigma T_{ref}^3} + \frac{Ra^I}{Ra}$$

Planck

$$Pl = \frac{k/L}{4\sigma T_{ref}^{3}} \qquad Ra^{I} = \frac{g\beta\dot{q}L^{5}}{v_{0}\alpha_{0}k} \qquad \text{Rayleigh } Ra = \frac{g\beta\Delta TL^{3}}{v_{0}\alpha_{0}}$$
21

Convection

Convection+Rayonnement

Cavité avec generation interne de puissance

[A. Yücel et al] NHT 2000 Volumes finis

Cavité 3D différentiellement chauffée

Merci