œ

Caractérisation et modélisation thermique multi-échelle

de matériaux hétérogènes

Denis ROCHAIS

CEA / Le Ripault

Caractérisation et modélisation thermique multi-échelle

Point commun à de nombreuses études: simulation du comportement thermomécanique d'objets complexes soumis à des environnements variés

 \Rightarrow Mise en œuvre de matériaux multi-échelles spécifiques (description de la microstructure

de l'échelle des constituants de base à l'échelle du matériau fini i.e. de 10 nm au cm)

 \Rightarrow Fourniture des propriétés thermiques effectives en fonction de la température pouvant être introduites dans les codes de calcul (maille homogénéisée)

⇒ Participation à l'optimisation de ces matériaux en modélisant leur comportement à partir de leur microstructure réelle (aide au choix des constituants et de leur agencement)

Caractérisation des propriétés thermiques à différentes échelles

Matériaux composites à l'origine des développements expérimentaux et numériques à LMC

+ mesure du coefficient de dilatation thermique jusqu'à 2700°C + ATG HT

Détermination de la conductivité thermique en fonction de la température

Principe de la microscopie photothermique – Effets photothermiques

Principe de la microscopie photothermique – Ondes thermiques

 $Q.e^{j\omega t}$

- source de chaleur harmonique et ponctuelle
- k: conductivité thermique
- α: diffusivité thermique

Principe de la microscopie photothermique – Solutions théoriques

Développement de modèles d'analyse pour l'identification de la diffusivité thermique

r : rayon en coordonnées polaires

x, y : position en coordonnéees cartésiennes

Cas orthotrope à symétrie cylindrique

$$\frac{\partial \varphi}{\partial r} = \frac{1}{\mu_r} = -\sqrt{\frac{\pi f}{\alpha_r}}$$
$$\frac{\partial \varphi}{\partial \theta} = -\frac{1}{\mu_{\theta}}$$

ılt - denis.rochais@cea.fr

Principe de la microscopie photothermique – Photoréflectance

N.B.: focalisation des faisceaux laser jusqu'à la limite de diffraction => résolution spatiale ~1µm

Principe de la microscopie photothermique – Dispositif de mesure

Utilisation du profil d'amplitude
Mesure d'anisotropie

Utilisation du profil de phase Mesure de la diffusivité thermique

Principe de la microscopie photothermique infra-rouge

IM

Caractérisation à l'échelle microscopique : fibre de carbone

Influence de la microstructure

<u>Coupes transversales</u>

-1.5 -1.5 -1 -0.5 0 0.5 1 1.5 offset between probe and pump beam along x (micrometers)

Texture de la fibre de carbone => diffusion radiale de la chaleur

denis.rochais@cea.fr

Caractérisation microscopique : fibre de carbone en température

fibre ex-PAN à 1000°C Influence de la microstructure ~10µm de diamètre <u>Coupe longitudinale</u> Attenuation (dB) 3 2 f = 1MHz-6 Along y direction (µm) ·10 probe beam -12 -14 -16 pump beam -2 -18 -2 -3 -20 -3 .22 Ο -1 Along x direction (µm)

Photo de l'échantillon à 1000°C

Identification du degré d'anisotropie (~5) et de la direction principale longitudinale

 $\Rightarrow \alpha_{\rm I} = 1,3 \ 10^{-5} \ {\rm m}^2/{\rm s}$

 $\alpha_{\rm T} = 2.6 \ 10^{-6} \ {\rm m}^2/{\rm s}$

D. Rochais et al., Journal of Physics D: Applied Physics 38, 1498-1503 (2005)

Caractérisation microscopique : milieu orthotrope à symétrie cylindrique

Influence de l'anisotropie thermique et de la microstructure

Caractérisation à l'échelle mésoscopique : mèche de carbone

Modèle de conduction et diffusion thermique par différences finies (2/3)

 $\varphi_v = 0$

<u>Objectif</u>

Détermination du tenseur des conductivités thermiques effectives d'un matériau hétérogène dont les différents constituants sont thermiquement isotropes

<u>Démarche</u>

résolution du champ de température stationnaire s'établissant au sein de l'échantillon par *une technique de plaque chaude gardée numérique*

- évaluation de la puissance thermique traversant l'échantillon de la plaque chaude vers la plaque froide $\Phi = \iint d\varphi_x . dS$

- évaluation de la conductivité thermique effective dans la direction normale aux deux faces à température imposée

Modèle de conduction et diffusion thermique par différences finies (3/3)

<u>Objectif</u>

Simulation de la méthode flash pour déterminer la diffusivité thermique et la chaleur volumique effectives du milieu hétérogène

<u>Démarche</u>

- résolution du champ de température instationnaire au sein de l'échantillon

- obtention de l'évolution de la température en face arrière

- identification de a et C par une technique de moindres carrés à l'aide d'un modèle 1D de matériau homogène équivalent.

Matériau composite Carbone/Résine UD AIRBUS

Simulations à partir de photographies de la structure du composite

Expérience de plaque chaude gardée numérique pour déterminer la conductivité thermique effective du milieu À chaque pixel de l'image, on

Couche poreuse de Pyrocarbone des billes HTR

Diffusivité radiale : 4,10.10⁻⁶ m²/s

Diffusivité radiale : 4,16.10⁻⁶ m²/s

D. Rochais et Al, Nuclear Engineering and Design, (2008), doi:10.1016/j.nucengdes.2007.11.025

Matériau alvéolaire : mousse de carbone

Feutres de SiC : importance du Volume Elémentaire Représentatif (VER)

Tomographie X (1,7x1,7x1,1mm³)

Conductivité dans l'épaisseur par PCGN = $\alpha.\rho.Cp$ (propriétés mesurées expérimentalement)

Feutre densifié partiellement

Température normalisée

Conductivité dans l'épaisseur par PCGN $\neq \alpha.\rho.Cp$ expérimental (écart de 30%)

Cause: hétérogénéité de densification ⇒ importance du choix du VER ⇒ statistique sur ≠ prélèvements de tomo

Tomographie X (1,7x1,7x1,1mm³)

<u>NB</u>: propriétés des fibres et de la matrice mesurées par MP