Couplage d'un code d'écoulement 3D laminaire avec un modèle de propriétés radiatives de gaz de type « somme pondérée de gaz gris ».

Etude de l'effet de la dimension de la cavité.

Société Française de thermique Groupe « Mode de transfert – Rayonnement » GDR CNRS 3438 ACCORT

Yann Billaud*, Didier Saury, Denis Lemonnier

Institut P' – UPR CNRS 3346 ENSMA – Teleport 2 BP 40109 F86961 FUTUROSCOPE CHASSENEUIL DU POITOU

- Ecoulements de convection naturelle = mouvements de fluide → variations spatiales de densité dans le champ gravitationnel terrestre.
- Ex: manteau terrestre, local chauffée, ...

 Maîtrise et optimisation des transferts thermiques → continuité du programme de recherche COCORACOPHA II (COuplage COnvection RAyonnement COndensation Pour l'HAbitat), PIE2 CNRS. Compréhension de la convection naturelle

→ Cavité différentiellement chauffée

$$Ra = \frac{g\beta\Delta TL^3}{\nu\alpha} \qquad \qquad Nu^c = \frac{\phi_{conv}}{\phi_{cond}} = \frac{L}{\Delta T} \left| \frac{\partial T}{\partial x} \right|_w$$

Compréhension de la convection naturelle

→ Cavité différentiellement chauffée

Ra =	$\frac{g\beta\Delta TL^3}{\nu\alpha}$	$Nu^{c} = \frac{\phi_{conv}}{\phi_{cond}} = \frac{L}{\Delta T} \left \frac{\partial T}{\partial x} \right _{w}$					
		2D, carré					
Année	Auteurs	Da	Rayonnement				
		RU	Fluide	Parois			
1983	de Vahl Davis	$[10^3 \rightarrow 10^6]$	×	×			
1991	Le Quere	$[10^7 \rightarrow 10^8]$	×	×			
1991	Lankhorst	$[10^8 \rightarrow 10^{10}]$	×	\checkmark			
1989	Yucel	10 ⁶	Gris	×			
2013	Ibrahim	10 ⁹	\checkmark	\checkmark			

Compréhension de la convection naturelle → Cavité différentiellement chauffée

$$Ra = \frac{g\beta\Delta TL^{3}}{\nu\alpha} \qquad Nu^{c} = \frac{\phi_{conv}}{\phi_{cond}} = \frac{L}{\Delta T} \left| \frac{\partial T}{\partial x} \right|_{W}$$

$$\frac{2D, carr\acute{e}}{Parois}$$
Année Auteurs
$$Ra \qquad \begin{array}{c} Rayonnement \\ Fluide Parois \end{array}$$
1983 de Vahl Davis
$$[10^{3} \rightarrow 10^{6}] \qquad \times \qquad \times \\ 1991 \qquad Le \ Quere \qquad [10^{7} \rightarrow 10^{8}] \qquad \times \qquad \times \\ 1991 \qquad Lankhorst \qquad [10^{8} \rightarrow 10^{10}] \qquad \times \qquad \checkmark \\ 1989 \qquad Yucel \qquad 10^{6} \qquad Gris \qquad \times \\ 2013 \qquad lbrahim \qquad 10^{9} \qquad \checkmark \qquad \checkmark$$

Τ_c ε=1

u=v=w=0

 $\mathbf{\Lambda}$

L

 ΔT

| _g

Compréhension de la convection naturelle

→ Cavité différentiellement chauffée

Ra =	$\frac{g\beta\Delta TL^3}{\nu\alpha}$	$Nu^{c} = \frac{\phi_{conv}}{\phi_{cond}} = \frac{L}{\Delta T} \left \frac{\partial T}{\partial x} \right _{w}$					
<u>3D, cubique</u>							
Annéa	Auteurs	D~	Rayonnement				
Annee		ĸa	Fluide	Parois			
2000	Tric	$[10^3 \rightarrow 10^7]$	×	×			
2008	Borjini	10 ⁵	Gris	×			
2004	Colomer	$[10^3 \rightarrow 10^6]$	Gris	\checkmark			
1989	Borget	106	\checkmark	×			
2012	Soucasse	$[10^5 \rightarrow 10^7]$	\checkmark	\checkmark			

Τ_c ε=1

u=v=w=0

Isolitemat

 ΔT

| _____

Compréhension de la convection naturelle

→ Cavité différentiellement chauffée

$Ra = \frac{g\beta\Delta TL^3}{\nu\alpha}$		$Nu^c = rac{\phi_{cont}}{\phi_{cont}}$	$\frac{L}{L} = \frac{L}{\Delta T} \left \frac{\partial}{\partial t} \right ^2$	to the man	
		<u>3D, cubique</u>			T_{h} $\varepsilon=1$ $u=v=w=0$ Adjubatic wells
A ra ra é a		D	Rayonr	nement	Allabalt walls
Année Auteu		ка	Fluide	Parois	
2000	Tric	$[10^3 \rightarrow 10^7]$	×	×	
2008	Borjini	10 ⁵	Gris	×	Effet de la dimension de la
2004	Colomer	$[10^3 \rightarrow 10^6]$	Gris	\checkmark	cavité sur les transferts et
1989	Borget	10 ⁶	✓	×	l'instationnarité?
2012	Soucasse	$[10^5 \rightarrow 10^7]$	\checkmark	\checkmark	

$$\begin{bmatrix}
\nabla \cdot \boldsymbol{u} = 0 \\
\rho_0 \frac{\partial \boldsymbol{u}}{\partial t} + \rho_0 \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \rho_0 \beta \boldsymbol{g} (T - T_0) + \mu \nabla^2 \boldsymbol{u} \\
\rho_0 C_p \frac{\partial T}{\partial t} + \rho_0 C_p \boldsymbol{u} \cdot \nabla T = \lambda \nabla^2 T - \nabla \cdot \boldsymbol{q}_r
\end{bmatrix}$$

Adiabatic walls

 \circ Couplage écoulement / énergie \rightarrow renforcé par terme source radiatif

- Couplage écoulement / énergie \rightarrow renforcé par terme source radiatif
- Méthode des Ordonnées Discrètes (MOD) + Spectral line weighted sum of gray gases (SLW)

- \circ Couplage écoulement / énergie \rightarrow renforcé par terme source radiatif
- Méthode des Ordonnées Discrètes (MOD) + Spectral line weighted sum of gray gases (SLW)
- Conditions aux limites Parois

$$T = T_c \qquad x = 0$$

$$T = T_f \qquad x = L$$

$$(-\lambda \nabla T + q_r) \cdot n = 0 \qquad y = 0, y = L, z = 0, z = L$$

- Couplage écoulement / énergie \rightarrow renforcé par terme source radiatif
- Méthode des Ordonnées Discrètes (MOD) + Spectral line weighted sum of gray gases (SLW)
- Conditions aux limites Parois

$$T = T_c \qquad x = 0$$

$$T = T_f \qquad x = L$$

$$(-\lambda \nabla T + q_r) \cdot n = 0 \qquad y = 0, y = L, z = 0, z = L$$

Système résolu par Code_Saturne (EDF)

-12

-16

-20 L

 $q_w [W.m^{-2}]$

Méthode aux Ordonnées Discrètes (MOD)

$$-\nabla \cdot q_r = \kappa \sum_{m=1}^M w_m I_m - 4a\sigma T^4$$

Cas de validation

- o Gaz gris, $\kappa = 1m^{-1}$
- o Champ de T^{ure} imposé
- $\circ \quad T_w = 300K, \, \varepsilon_w = 0.5$

Comparaison (MC-vs-MOD)

- Flux pariétaux → OK
- Terme source \rightarrow OK
- o Choix de la quadrature

 \rightarrow S₈ (M=80 directions)

Modèle de type 'somme pondérée de

gaz gris' (SLW), [Denison, JHT, 1993]

$$\varepsilon(T) = \sum_{j=0}^{N_g} a_j(T) \left[1 - \exp(-\kappa_j L) \right]$$

Cas de validation

- o Vapeur d'eau
- \circ T = 1000K
- $\circ \quad T_w = 300K, \, \varepsilon_w = 1$

Comparaison (SNB-vs-SLW)

- Flux pariétaux → OK
- Terme source \rightarrow OK

• Choix du nombre de gaz
$$\rightarrow N_g = 8$$

Méthode de collocation de Chebyshev

+ Ray tracing + ADF, [Soucasse, CTS, 2012]

-VS-

Méthode des volumes finis + MOD (S_8) + SLW-8

Méthode de collocation de Chebyshev

+ Ray tracing + ADF, [Soucasse, CTS, 2012]

-VS-

Méthode des volumes finis + MOD (S_8) + SLW-8

Са	s de validation		Rayonnement			
	x = 0.02		Fluide	Parois		
0	$x_{H_20} = 0,02$	А	×	×		
0	$T_0 = 300K$	В	\checkmark	×		
0	$\Delta T = 0,011K$	С	×	\checkmark		
0	$Ra = 10^{6}$	D	\checkmark	\checkmark		

Comparaison

 \circ Profils de vitesse \rightarrow OK

 $U_{ref} = \alpha \sqrt{Ra}/L$

Comparaison

- \circ Profils de vitesse \rightarrow OK
- \circ Profils de température \rightarrow OK

 \circ Transferts thermiques \rightarrow OK

	A		В		C			D				
	Ref.	*	Е	Ref.	*	Е	Ref.	*	Е	Ref.	*	Е
Nu ^c	8.64	8.65	<1%	7.55	7.42	2%	8.47	8.10	4%	8.48	8.01	5%
Nu ^r	139.7	125.6	-	120.6	121.3	<1%	124.5	124.8	<1%	119.6	119.9	<1%
S	0.91	0.92	<1%	0.36	0.35	3%	0.42	0.41	2%	0.26	0.24	8%
t _{CPU}	20 h	30	h	170 h	25	h	20 h	35	h	100 h	50	h
N _{proc}	4	1		94	1		8	1		94	1	

Erreur associée à la stratification (cas D)

 \rightarrow maillage au centre de la cavité

Calculs \rightarrow processeur Quad-Core AMD Opteron(tm), 2.3 GHz

Régime « Couches limites »

 \rightarrow

Régime « Cœur tournant »

3.2 Profils de température et de vitesses verticale et horizontale 3. Résultats $x^* = 0.5$ & $z^* = 0.5$ Parois adiabatiques réfléchissantes Cas A – no rad. Cas B – gas rad. • Fort **couplage** T*[-] T* [-] -0.5 0.5 0.25 -0.25 0.25 -0.25 0.5 -0.5 0.5 0.5 Thermique/Ecoulement: L=1m L=2m L=3m 0.25 0.75 0.25 0.75 Faibles variations de T (dues à T* [-] [-] *T 0.5 ^[] 0.5_{*}^{-1} ✓ épaisseur optique) 0.25 -0.25 0.25 -0.25 -0.5 -0.5 **Importantes** variations de *V* 0 0.25 0.5 x* [-] 0.75 0 0.25 0.5 x* [-] 0.75 u*_x[-] u*_x[-] 0 -0.5 -0.25 0.25 0.5 -0.25 0.25 0.5 -0.5 0.5 0.5 Variations Ο L=1m L=2m L=3m

- $\max(u_z^*) \nearrow$
- épaississement des couches limites visqueuses (ray.)

○ **Rayonnement** \searrow la contribution convective (ex: L=1m, $Nu^c = 8,65 \rightarrow 7,54$) →

homogénéisation de la température (absorption, réémission) $\rightarrow \left|\frac{\partial T}{\partial x}\right|_{x^*=0}$

• **Rayonnement** \searrow la contribution convective (ex: L=1m, $Nu^c = 8,65 \rightarrow 7,54$) \rightarrow

homogénéisation de la température (absorption, réémission) $\rightarrow \left|\frac{\partial T}{\partial x}\right|_{x^*=0}$

Dimension de la cavité ↗ (L = 1 → 2m) → Nu^c ↘ (OK avec 1^{er} constat, *i.e.* ↗ ray. ↘ gradient), <u>mais</u>, la vitesse ↗ avec L, ce qui a pour effet ↗ gradient!
 Compétition Rayonnement -vs- Ecoulement → diminution puis une augmentation du Nusselt convectif

$$Nu^{r} = \frac{\phi_{rad}}{\phi_{cond}} = \frac{L}{\lambda\Delta T} \int_{0}^{1} \int_{0}^{1} |q_{r}^{net}|_{x^{*}=0} dy^{*} dz^{*} \qquad A - \text{no rad.} \qquad B - \text{gas rad.}$$

$$I = 2 - 3 \qquad I = 2 - 3$$

o Prise en compte du **Rayonnement** du milieu ↘ l'échange radiatif entre les parois (ex:

$$L=1m, Nu^{r} = 119,9 \rightarrow 117,1) \Rightarrow \text{absorption du ray.}$$

$$Nu^{r} = \frac{\phi_{rad}}{\phi_{cond}} = \frac{L}{\lambda\Delta T} \int_{0}^{1} \int_{0}^{1} |q_{r}^{net}|_{x^{*}=0} dy^{*} dz^{*} \frac{A - \text{no rad.}}{1 \quad 2 \quad 3} \qquad \begin{array}{c|c} & B - \text{gas rad.} \\ \hline & 1 \quad 2 \quad 3 \\ & Nu^{r} \quad 119,9 \quad 239,5 \quad 359,2 \\ & Nu^{r*} \quad 119,9 \quad 119,7 \quad 119,7 \\ & 117,1 \quad 115,1 \quad 113,6 \\ \hline & - & - \end{array}$$

o Prise en compte du **Rayonnement** du milieu ↘ l'échange radiatif entre les parois (ex:

Facteur d'échelle • Influence de L \rightarrow une nouvelle variable $Nu^{r*} = Nu^r \times \underbrace{\frac{L_0}{L}}_{L}$ avec $L_0 = 1m$.

• Sans rayonnement $\rightarrow Nu^{r*} \sim \text{cste car} \frac{q_r^{net}}{\Delta T} \sim \text{cst} (\Delta T \ll 1, \text{ linéarisation du ray.})$

• Avec rayonnement $\rightarrow Nu^r \searrow$ car \nearrow absorption du rayonnement par le milieu (\nearrow du libre parcours moyen).

Iso-vitesses transverse $v^* = -0.02$ (bleu) et $v^* = +0.02$ (jaune)

↗ écoulement transverse

(rayonnement des parois ++)

- Simulations d'écoulement en **convection naturelle laminaire** $(Ra = 10^6) \rightarrow$ MVF;
- Configuration → cavité différentiellement chauffée remplie d'un mélange d'air et de vapeur d'eau ($\varphi = 50\%$, $T_0 = 293, 15K$);
- **Couplage** \neq coulement/rayonnement \rightarrow le terme source radiatif (MOD+SLW);
- L'ETR est résolue pour $n_g = 8$ gaz fictifs via κ_j et a_j .
- Validation → comparaison avec des résultats de référence [Soucasse, 2013]
 - profils de vitesse et de température,
 - transferts convectif (Nu^c) et radiatif (Nu^r) aux parois,

(sur 3 configurations radiatives + 1 configuration convective pure)

 O Modèle → étudier l'influence de la dimension de la cavité sur l'écoulement et sur les transferts de chaleur.

- Etude d'un écoulement à fort couplage vitesse-température invariant par changement d'échelle (convection pure)
- O Milieu est participatif → forte dépendance de la température et des champs de vitesse vis-à-vis de la dimension de la cavité:
 - ↗ circulation globale du fluide dans la cavité;
 - épaississement des couches limites thermique et donc visqueuses;
 - une disparition du cœur stagnant.
- Le rayonnement de parois accentue ces effets (non montré ici).
- O Milieu participatif, ↗ dimension de la cavité entraine ↗ transferts radiatifs.
- Dimension de la cavité amplifie les effets 3D → Intensification de la composante transversale de la vitesse.
- Le rayonnement des parois accentue cet effet.

- Première tentative pour comprendre les effets du rayonnement des gaz sur la prédiction de la transition vers l'instationnarité à l'échelle de l'habitat dépend de
 - la nature des parois;
 - la dimension de la cavité;
 - la composition de l'air, ...
- Observations pourraient s'avérer utiles pour comprendre l'influence du rayonnement (propriétés radiatives du milieu et dimension de l'enceinte) sur les écoulements turbulents qui est à l'heure actuelle un enjeu important.