Holographie numérique hétérodyne et thermoreflectance appliquées à des mesures thermiques haute résolution

Gilles Tessier – Institut Langevin, UMR 7587, ESPCI Holographie numérique : <u>Sarah Suck</u> (doctorante), N. Warnasooriya (post doc) Thermographie résolue en temps : <u>Virginie Moreau</u> (post doctorante)

D. Fournier – LPEM, UPRA005, ESPCIF. Joud, M. Gross, LKB, ENSP. Bun,M. Coppey-Moisan, Inst. J. Monod

 1- Thermoréflectance résolue en temps résolue en fréquence
2- Holographie numérique imagerie de nanoparticules

Quelques problème thermiques en électronique intégrée / optronique

1,8µm

• Transistors de puissance : échauffement dans la zone grille drain

- MOS : Courant transitoire lors du basculement
 - augmente avec la fréquence

- Diodes laser :
- Effet Joule à l'injection
- Absorption du faisceau dans les couches

Détection de points chauds / imagerie de température Dans les circuits intégrés

- temperatures élevées
- petites échelles
- Dispositifs 3D

Photoreflectance ou Thermoreflectance avec une sonde laser

Le coefficient de réflexion d'une surface dépend de sa température :

Mesure de $\Delta R \stackrel{\text{a}}{=} n'importe quelle longueur d'onde$

Variation de temperature ΔT

1

Thermoreflectance sous illumination visible

Interférences et thermoreflectance

Réseau de transistors (ST Microelectronics)

125 µm

Structure sans fuites: Pas de points chauds

Réseau de transistors (ST Microelectronics)

Resolution spatiale< 340 nm

Imagerie à travers 6 µm de diélectrique

l 3 µm

Vertical Cavity Surface Emission Lasers (VCSELs)

M Bardoux, ESPCI, S. Bouchoule, A. Bousseksou, LPN

Thermoreflectance résolue en temps

Impulsions lumineuses : 250 ns

= Résolution temporelle

Thermoréflectance résolue en temps

V. Moreau Collaboration M. Brunstein, A. Yacomotti, R. Raj, A. Levenson, <u>LPN Marcoussis</u>

Photonic crystal active structures emitting at 1.55 µm

- For many applications, such as laser effect or non-linear studies, the pump can be intense and the heating should be managed.
- In other cases, these effects can be useful : thermo-optical switches

Need for a non invasive spatio- temporal high resolved system for temperature measurement

<u>Transient thermoreflectance</u> principle : stroboscopic principle

Transient thermoreflectance principle

Transient thermoreflectance on a photonic crystal laser

Transient thermoreflectance on a photonic crystal laser

Spatio-temporal distribution of temperature on 2D photonic crystal lasers

Dissipation time < 1 µs and increase of temperature around 2 K

Different mechanisms of thermal evacuation

Thermoreflectance dans l'Infra Rouge

Infrarouge proche

Configurations « flip chip »

Substrat retourné face active en contact thermique avec le support

Thermoreflectance avec une caméra InGaAs

Imagerie proche infrarouge en face arrière

 ΔT (K, in Si only)

Puissance dissipée : 500 mW objectif X50, 0.6N.A. Résolution limitée par la diffraction : 1.7 μm

Lentille à immersion solide: Si

Thermoreflectance proche infrarouge avec Lentille à Immersion

Résolution moyenne 440 nm Ouverture numérique 2.36

G. Tessier, M. Bardoux, C. Boué, C. Filloy, D. Fournier, Appl. Phys. Lett. 90, 171112 (2007

Direct detection of nanoparticles

50 nm Au beads in Poly Vinyl Alcohol

- Dark field
- Good sensitivity :

10 nm demonstrated (E. Absil, G. Tessier, D. Fournier, M. Atlan, M. Gross,

• No selectivity (dust or other diffusers)

• <u>No 3D</u>

Laser

Numerical propagation from the detector to a chosen plane

Recorded Hologram

Hologram in the *k*-space of wave vectors

Propagation over distance z

- : H(x, y, 0)
- : $\tilde{H}(k_x, k_y, 0) = \text{FFT}[H(x, y, 0)]$
- $: \quad \widetilde{K}(k_x,k_y,z) = e^{jz(k_x^2 + k_y^2)/k}$

 $\widetilde{H}(k_x,k_y,z)=\widetilde{K}(k_x,k_y,z)\widetilde{H}(k_x,k_y,z)$

Reconstructed hologram in the chosen plane (z=d): $H(x,y,z) = FFT^{-1}[\tilde{H}(k_x,k_y,z)]$

→ 2 Fourier transforms

2D Fourier transform of the hologram

Relevant signal: <u>Exit pupil</u> of the objective

Filtering in the wave vectors space

M. Atlan , M. Gross, E. Absil, Opt. Lett. 32, 1456 (2007 M. Gross, M. Atlan, Opt. Lett. 32, 909 (2007)

E.Absil, Optics Express (2009)

50 nm particles

E.Absil, Optics Express (2009)

10 nm particles

E.Absil, Optics Express (2009)

Comparison of the signals

- The signal (scattering) is lower in photothermal mode
- BUT the signal to noise ratio is 1000 times higher for 50 nm beads

Reconstruction at the exit pupil of the objective : *k* wave vectors

50 nm beads, non photothermal

Quasi isotropic scattering

Reconstruction at the exit pupil of the objective : *k* wave vectors

50 nm beads, non photothermal

Quasi isotropic scattering

50 nm beads, photothermal

Reconstruction at the exit pupil of the objective : *k* wave vectors

50 nm beads, non photothermal

50 nm beads, photothermal

10 nm beads, photothermal

10 nm beads

Different scattering from gold beads and dust Film reconstructed from a <u>single hologram</u> (acquisition < 5s)

Sample preparation

Sample: 3T3 mouse fibroblast + 40 nm gold particles

(Philippe Bun, Maïté Coppey-Moisan: Département de Biologie Cellulaire, Institut Jacques Monod, Paris.)

Bille d'or 40 nm Accumulation 32 images (env. 2s)

N.Warnasooriya, F. Joud et al., submitted to Optics Express

D'autres types de modulations ?

Test-Sample

Integrated circuit consisting of 5 resistors: $R_{Heat} \approx 500 \Omega$

 $90 \times 90 \ \mu m^2$

G. Tessier et al., JPD-AP **39**, 4159, (2006)

Imaging and Calibration

$\Delta f = \frac{1}{4} \cdot f_{CCD} + F_{H}$

[•] Accumulation time : 15 sec

• Definition: 410 x 410 pixel

Heater ON : $F_{VAR} = F_{H} - const.$

• Temperature resolution: ΔT =0.35 K for acquisition time of ~15 sec ΔT =0.70 K for acquisition time of < 5 sec

• Resolution = diffraction limit ($\lambda/(2*NA)$)

Thermal response of a sine wave excitation

Thermal square wave excitation

S. Suck et al. Submitted to Appl. Phys. Lett.