

Lien entre acoustique et thermique en excitation ultra-brève

Clément Rossignol⁽¹⁾ Jean Luc Battaglia⁽²⁾ Vincent Schick⁽²⁾

(1)Laboratoire de Mécanique Physique Université Bordeaux 1 CNRS 351, Cours de la Libération 33405 TALENCE cedex

(2)Laboratoire TRansfert Ecoulement FLuide Energetique Université Bordeaux 1 Esplanade des Arts et Métiers

Journée SFT 17/12/2009

33405 TALENCE cedex

Avant propos

- Métrologie thermique, dimension et échelle de temps
 - TREFLE- Équipe thermocinétique et caractérisation

- Métrologie thermique → Application aux mémoires à changement de phase (verre chalcogénure GeSbTe)
 - 25-400℃
 - 40-200nm
 - Résistance thermique d'interface

Principe de la technique pompe sonde résolu en temps

Principe de la technique pompe sonde résolu en temps

 Phénomène thermique Reflectivity changes (10⁻⁴) observé - Réponse face avant à une $\lambda = 719 \text{ nm}$ excitation flash face avant TDTR sur 6µm aluminium 10 slope -1/2normalized **TDIR** 100 200 300 Time delay (ps) 0.1 1 10 100 1000 temps (ps) Battaglia et al .2006

- Utilisation de la détection synchrone:
 - Résolution temporelle de l'ordre de 10^{-12 s}
 - Mesure de $\frac{\Delta R}{R_a}$ avec une sensibilité de 10⁻⁷
 - Longueur de la plage de mesure: 6ns
 - Bande passante du détecteur : DC -15MHz
 - Niveau de bruit très élevé

 Utilisation de la détection synchrone : modulation du faisceau pompe

faisceau sonde réfléchi

• Utilisation de la détection synchrone : lissage des courbes et temps d'intégration

- Utilisation d'un transducteur métallique
 - Évite ablation échantillon
 - Évite évaporation/oxydation échantillon (haute température)
- Choix du transducteur métallique
 - AI, Pt (10-55nm)
- Puissance reçu par échantillon : 1mW
- Rayon tache laser (10-12 μm) avec objectif X20
 Journée SFT 17/12/2009

Échantillon

Si//SIO2(100nm)/a-GST(210nm)/AI(20nm)

- Recouvrement pompe sonde
 - Dérive ligne à retard

Col du faisceau

• Recouvrement pompe sonde

Journée SFT 17/12/2009

- Effet cumulatif
 - Constat
 - Mesure sur 12.5 ns : problème de relaxation sur les matériaux résistif.
 - Influence au temps longs (>1ns) Capinsky et Marris
 - Simulation
 - Peigne de Dirac et Inversion

- Littérature et modèle $\Delta R(t) = \Gamma \left[I_p(t) \sum_{n=1}^{+\infty} \delta(t - p.T) \cos(2.\pi f_m t) \right] \Delta r(t) I_s \sum_{n=1}^{+\infty} \delta(t - \tau - n.T)$

$$\widetilde{S}_{f_m}(\tau) = \widetilde{S}\left\{\Delta r(\tau) \cdot e^{-2 \cdot j \cdot \pi \cdot f_m \cdot \tau} + \sum_{q=1}^{+\infty} \Delta r(q \cdot T) \cdot e^{-2 \cdot j \cdot \pi \cdot f_m \cdot \tau}\right\}$$

Modélisation

- Transport dans les matériaux
 - Métaux
 - Semiconducteur
 - Isolant
- Modèle à deux températures
- Prises en compte des Interfaces
- Transfert thermique unidimensionnel
- Modulation du signal : stationnaire
- Pas de terme convectif

Mesure de diffusivité : Si//SIO₂(100nm)/GST(840nm)

- Résolution équation de la chaleur avec terme source
 - Comportement asymptotique au temps court

$$\left\langle T_{0}\right\rangle_{t\to0}$$
 \rightarrow $\frac{\eta(r_{h},r_{p})\varepsilon}{C}$

- Comportement asymptotique au temps long $\langle T_0 \rangle_{t \to \infty} \to \frac{\eta(r_h, r_p) \beta_h \varepsilon}{\sqrt{k C_p} \sqrt{\pi t}}$
- Calcul de la diffusivité

$$\overline{TDTR_{t_{\infty}}} = \frac{\langle T_0 \rangle_{t \to \infty}}{\langle T_0 \rangle_{t \to 0}} \to \frac{1}{\beta_h \sqrt{a} \sqrt{\pi}} \frac{1}{\sqrt{t}} = \underbrace{\xi }_{\sqrt{t}}^1 \longrightarrow a = \frac{1}{\beta_h^2 \pi \xi^2}$$

Mesure de diffusivité : Si//SIO₂(100nm)/GST(840nm)

• Si//SiO2(100nm)/GST(210nm)/Al(10nm)

Etude mécanique interface GST/AI

Etude mécanique interface GST/AI

 \diamond

800

Résultats

- Propriétés thermiques GST (25-400℃)
 - Si//SIO2(100nm)/ αGST(210nm)/AI (20nm)
 - GST 210nm : semi infini
 - Profondeur de pénétration pompe (12nm)

Résultats

Temps : 1.10⁻¹²⁻1.10⁻⁸ s

Temps long : 1.10⁻⁹⁻1.10⁻⁸ s

Résultats

Conclusion et perspectives

- Une solution aux problèmes d'accumulation d'impulsions aux temps longs (modèle + expérimentation)
- Compréhension de tous les phénomènes temps longs et courts
- Résistances d'interfaces
- Plages de températures plus élevées études des liquides