

Caractérisation thermique à haute température de films fins par Radiométrie PhotoThermique

Andrea CAPPELLA, Vincent SCHICK, Jean-Luc BATTAGLIA, Andrzej KUSIAK

Matériaux caractérisés

- Montage expérimentale
- Applications
- Conclusions

Film en couche mince

Radiométrie Photothermique Modulée

- Hypothèses :
 - Le flux émis est proportionnel à la température de surface visé par le détecteur
 - ✓ Petite excitations

$$\downarrow \varphi(\omega) = \varphi_0 (1 + \cos \omega t)$$

Radiométrie Photothermique Modulée

- [100 100k] Hz
- T_{amb} → 1200 ℃
- Sous vide ou en atmosphère inerte

Milieux semi-transparents

Matériaux semi conducteurs

A. Mandelis et al., Phys. Rev. B 67, 205208 (2003)

Échantillons

- 30 nm de Pt déposé par PVD
 - Afin de limiter l'oxydation et l'évaporation des dépôts
 - Afin d'absorber le laser (k=4.5 at 512 nm)
 - ✓ Transducteur thermique

 Le transducteur en platine n'a pas changé pendant le recuit

Préambule : mémoire à semi-conducteur

Loi de Moore

 le nombre de transistors sur une puce microprocesseur de silicium double tous les 2 ans.

Loi de Moore appliquée à la technologie des memoires de type FLASH (source STM)

Introduction de la technologie de stockage des données à puits flottants

Matériaux à changement de phase pour le stockage des données

 $T_{amb} \rightarrow 130^{\circ}$

 \rightarrow

- pas d'ordre à longue distance
- k~2 à 600 nm
- Résistance électrique élevée

- ordre à longue distance
- k~4 à 600 nm
- **Résistance électrique élevée**

Propriétés Optiques

- Propriétés Électriques \rightarrow
- Mémoire de stockage des données

CD & DVD RW

10/27

Hautes températures requises

T > 600°C pendant 10 ns

 λ_{GST} de la phase liquide ?

Pas de données dans la littérature !

- Connaissance des paramètres thermiques :
 - Dimensionnement du transistor de contrôle
 - Dimensionnement de la matrice de cellules

Effets d'interface :

David L. Kencke, IEEE 2007

« Les simulations montrent que la présence de résistances de contact réduit de 40% le courant nécessaire pour rendre le GST de nouveau amorphe »

Simulation du « reset » de la PCM sans et avec une RC

REIFENBERG et al.: IEEE EL. DEV. LET., VOL. 29, 2008

Pas de données expérimentaux concernant l'évolution de Rc pendant un cycle thermique et en fonction de la phase structurelle du matériau

Résistance thermique totale du dépôt

LARORATOIRE INTERETABL

Radiométrie Photothermique Modulée

LARORATOIRE INTERETABLISSEMENTS

Radiométrie Photothermique Modulée

Conductivité thermique du GST

Résistance thermique de contact

Démarche expérimental

Mesure des paramètres thermiques de tous les éléments composant la cellule de mémoire à changement de phase

ABODATOIDE INTEDETABLICCEMENT

Résistance de contact GST - substrat

Caractérisation électrique et chimiques

Même tendance pour les mesures électriques

- fit

 simulation - measure

10

Structure à gouttes par MOCVD

21/27

SUPRA 40-25-45

Noise Reduction = Pixel Avg.

Extractor I = 91.80 µA

LABORATOIRE INTERETABLISSEMENTS

SET

■ 30 min à 600℃

Noise Reduction = Pixel Avg.

Extractor I = 100.90 µA

LABORATOIRE INTERETABLISSEMENTS

- Radiométrie PT appliquée aux couches mince à l'état solide
 - Conductivité thermique des matériaux à changement de phase en fonction de la température
 - Résistance thermique entre le matériaux à changement de phase et le substrat en fonction de la température
 - ✓ Difficultés pour certain matériaux
- Radiométrie PT appliquée aux matériaux fondus
 - ✓ Analyse en cours

