### IMAGERIE THERMIQUE A HAUTE RESOLUTION SPATIALE PAR NANOCRISTAUX FLUORESCENTS

Elika Saïdi, Benjamin Samson, Loïc Lalouat, Lionel Aigouy

Laboratoire Photons Et Matière CNRS UPR 5, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 5



P. Löw, C Bergaud (LAAS, Toulouse, France)

R. Latempa, H. Diaf, J. Lesueur, D. Fournier (LPEM, ESPCI, Paris, France)

S. Volz (EM2C, ECP, Châtenay-Malabry, France) Synthèse de particules fluorescentes

Fabrication de nanofils

Fabrication de nanofils

Simulations





- 1) Matériau fluorescent
- 2) Procédure de fabrication des sondes
- 3) Imagerie thermique : mode DC
- 4) Imagerie thermique : mode AC
- 5) Imagerie thermique dans des liquides

# LE MATERIAU FLUORESCENT

Particules fluorées codopées Erbium/ytterbium : extrêmement robuste

Synthèse : M. Mortier team (ENSCP, Paris)

### Verre

 $(ZrF_4)_{45.5}, (BaF_2)_{23}, (YbF_3)_{11}, (ErF_3)_3, (AIF_3)_3, (InF_3)_{0.5}, (NaF)_{14}$ 

### Nanocristal

PbF<sub>2</sub> : Er<sup>3+</sup>/Yb<sup>3+</sup>



TEM : G. Patriarche (LPN, Marcoussis)



Grosse pièce : qui doit être réduite en poudre



## **TEMPERATURE DEPENDANCE DE LA FLUO**





**Nanocristal** PbF<sub>2</sub> : Er<sup>3+</sup>/Yb<sup>3+</sup>







## **PROCEDURE DE FABRICATION DES SONDES**

### Collage de la particule fluorescente



Collage in-situ dans un SEM

SE WD 8.5mm 15.0kV x25k 2um SE WD 8.5mm 15.0kV x25k 2um

Particule de taille 250nm

Image optique: 16.5 x 11.7 µm<sup>2</sup>



Particule de taille 250nm

## **EXEMPLES DE POINTES OBTENUES**



Taille ~ 200 nm

### Nanoparticule: taille 100-150nm



### Polymère



#### -Nanoparticule: taille 100-150nm

## **DISPOSITIF EXPERIMENTAL : IMAGERIE MODE DC**



Échantillon: P. Löw, C. Bergaud (LAAS, Toulouse)

> SiO<sub>2</sub> / Ni / SiO<sub>2</sub> / Si Largeur : 1µm Longueur : 40µm



Échantillon: P. Löw, C. Bergaud (LAAS, Toulouse)



Largeur : 1µm Longueur : 40µm



Rapport d'intensité de fluorescence



Pas de variations de température









Nanotechnology 20, 115703 (2009).

Jaune

('N')

# INFLUENCE DE L'EPAISSEUR D'OXYDE











JAP 102, 024305 (2007).



## **IMAGERIE THERMIQUE EN MODE AC**







## NANOFIL DE TITANE DE LARGEUR 100nm

Échantillon: E. Saïdi, J. Lesueur (LPEM/ESPCI)





Expérience : Elika Saïdi

# **TRANSFERT THERMIQUE POINTE/SURFACE**

#### Échantillon : P. Löw, C. Bergaud (LAAS)

Fil de Nickel : largeur = 500nm



## **IMAGERIE THERMIQUE DANS DES LIQUIDES**

Échantillon : P. Löw, C. Bergaud (LAAS)



Nanodispositifs chauffants

Utilisés pour induire le mouvement de molécules (rotation, translation)



## **IMAGERIE THERMIQUE DANS DES LIQUIDES**

Échantillon : P. Löw, C. Bergaud (LAAS)



Nanodispositifs chauffants

Utilisés pour induire le mouvement de molécules (rotation, translation)



Piste de Nickel : largeur = 4µm longueur = 40µm



**Expérience : Loïc Lalouat** 

### CONCLUSION

Particule fluorescente : capteur de température miniature efficace



