

1

Echangeurs thermiques et multi-fonctionnels : enjeux, applications et axes de recherche

Optimisation des performances d'échangeurs de chaleur.

École des Mines de DOUAI 941 rue Charles Bourseul - B.P. 838 - 59508 DOUAI Département Énergétique Industrielle Daniel Bougeard, Serge Russeil, Jean Luc Harion, Rabie Nacereddine daniel.bougeard@mines-douai.fr

Problématique industrielle

- Optimisation des systèmes énergétiques
 - Echangeurs : centraux dans des démarches d'optimisation énergétique de ces systèmes
 - Accroître les performances des échangeur : enjeu important
- Objectifs d'optimisation multiples :
 - Amélioration de l'efficacité énergétique
 - Qualité de mélange dans des configurations d'échangeurs multifonctionnels
 - Diminution de quantité de matière nécessaire à la fabrication du composant (coût matière)

- **Optimisation multicritères :**
 - Minimisation de la perte de charge
 - Minimisation de la masse
 - Amélioration de la compacité
- Boucle logicielle :
 - i-SIGHT
 - Logiciels CFD (Fluent, Star CCM+)

Optimisation de la géométrie d'un échangeur thermique composé de canaux élémentaires par simulation numérique

Détermination de la valeur optimale de la dimension des canaux permettant de maximiser la puissance thermique pour un volume fixe de l'échangeur et une perte de pression entréesortie imposée.

b

Optimisation de la géométrie d'un échangeur thermique composé de canaux élémentaires par simulation numérique

Puissances calculées en fonction de la dimension caractéristique du canal

	triangle équilatéral	triangle rectangle isocèle	carré
b optimal (mm)	1,91	1,86	1,12
b optimal (mm) [4]	1,81	1,78	1,07
Q* maximal	1827	1827	1907
Q* maximal [4]	3279	3279	3970

Radiateur automobile, aéroréfrigérant, aérocondenseur

Variation des pas géométriques
Variation de la forme des tubes
Variation de la position des tubes
Forme des ailettes

•Utilisation de technique d'intensification

Promoteur s de tourbillons

persiennes

- Optimisation d'un échangeur à un rang de tubes ronds
 - Configuration mono rang de tubes
 - Encombrement constant (W, H, Da) = (500, 300, 18) mm³
 - P_{th} constante
 - $e_a = 0,1 mm, e_t = 0,2 mm$
 - $Qv = 6,28.10^{-8} m^3/s$. $U_d = 1 m/s$
 - $D_t > 2 mm$

- Objectif : Minimisation de la puissance de ventilation
- Variables : nombres tubes et d'ailettes (pas intertube et pas interailette)

Pt/2

periodic

Simulation Numérique

- Code FLUENT
- Simulation RANS (k \overline sst)
- Motif élémentaire
- Couplage conducto-convectif

Simulation Numérique

- Géométrie et Maillage paramétriques
- Zones raffinées
- Détermination d'une densité de mailles optimales

Boucle d'optimisation

étape 1: Pour des valeurs n_a , n_t , e_a , e_t , U_d et Q_v les paramètres géométriques sont calculés et un fichier de mailllage est crée Étape 2: importation sous FLUENT du maillage et des paramètres de la simulation => calcul CFD

Étape 3:

La puissance de ventilation U₀·∆p est evaluée. Le logiciel d'optimisation de iSIGHT-FD modifie les variables du système et relance une itération de la boucle jusqu'à obtention d'une puissance de ventilation minimale

surfaces solides à températures constantes et comparaison à une configuration canal sans demi-tube $\Delta p = C^{te} = 35 Pa$

Résultats

Influence pas intertube

Acier, λ =52 W/m.K

Aluminum, λ =200 W/m.K

Cuivre, λ =380 W/m.K

Échangeur automobile à persiennes (thèse Julien Herpe 2007)

