





# Intensification du mélange et des transferts thermiques par la vorticité

#### Thierry LEMENAND, Charbel HABCHI, Akram GHANEM, Dominique DELLA VALLE, Hassan PEERHOSSAINI

LTN - Laboratoire de Thermocinétique de Nantes CNRS UMR 6607

Journée SFT « Échangeurs thermiques et multi-fonctionnels » 16 Mars 2011

1

II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

III.1 Transferts thermiquesIII.2 Critères d'intensification des transfertsIII.3 Critères d'efficacité énergétique

II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

**III.1 Transferts thermiques** 

**III.2 Critères d'intensification** 

III.3 Critères d'efficacité énergétique

### Écoulement en aval d'un générateur de vorticité







# Paire de Tourbillons Contrarotatifs (PTC)



# II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

**III.1 Transferts thermiques** 

**III.2 Critères d'intensification** 

III.3 Critères d'efficacité énergétique

# Échelles de mélange

- Macromélange : advection par le champ moyen
- Mésomélange : advection par les fluctuations de vitesse et les structures cohérentes de turbulence
- Micromélange : jusqu'à l'échelle moléculaire, décisif pour la sélectivité des réactions chimiques



# Méso et micromélange par les structures cohérentes



#### Vitesse moyenne axiale



#### **Dissipation turbulente**



# Méso et micromélange par les structures cohérentes



# Trois géométries étudiées



- Modèle de turbulence : RSM Launder et al., JFM (1975)
- Conditions aux limites thermiques : paroi à température imposée  $T_w$  = 360 K
- Quatre nombres de Reynolds de 7500 à 15000

## Mésomélange (contrôlé par la TKE)



k : TKE moyennée sur la section

Intensification de la turbulence par rapport aux rangées alignées + 8% pour rangées alternées + 27% pour rangées inversées

# Micromélange (contrôlé par $\varepsilon$ )

 $\varepsilon$ : taux de dissipation de la TKE moyennée sur la section



Intensification de la turbulence par rapport aux rangées alignées + 33% pour rangées alternées + 49% pour rangées inversées

II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

#### **III.1** Transferts thermiques

**III.2 Critères d'intensification** 

III.3 Critères d'efficacité énergétique

# Champs de température



#### **Performances thermiques globales**

#### Nombre de Nusselt

$$Nu = \frac{\dot{m}c_p}{\pi L\lambda} \frac{T_{b,outlet} - T_{b,inlet}}{T_w - T_{mean}}$$

Écart Quadratique Moyen





#### Gnielinski, ICE (1976)

 $\rightarrow$  Nombre de Nusselt dans un tube droit circulaire

Intensification des transferts par rapport aux rangées alignées

+ 18% pour rangées alternées

+ 41% pour rangées inversées

II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

**III.1 Transferts thermiques** 

#### **III.2** Critères d'intensification

III.3 Critères d'efficacité énergétique

### **Critères d'intensification**

Rapport des nombres de Nusselt: *Nu/Nu<sub>référence</sub>* 



Intensification des rangées alternées et inversées par rapport aux rangées alignées

#### **Critères d'intensification**



Classement des géométries par l'angle d'intersection

II. Intensification du mélange par la vorticité

# III. Intensification des transferts par la vorticité

- **III.1 Transferts thermiques**
- **III.2 Critères d'intensification**

**III.3 Critères d'efficacité énergétique** 

### **Critères d'efficacité énergétique**



Intensification des transferts par rapport aux rangées alignées

+ 12% pour rangées alternées

+ 25% pour rangées inversées

#### **Critères d'efficacité énergétique**

Diagramme d'efficacité



#### Critères d'efficacité énergétique

Production d'entropie : caractérise les dissipations mécaniques et thermiques



II. Intensification du mélange par la vorticité

III. Intensification des transferts par la vorticité

**III.1 Transferts thermiques** 

**III.2 Critères d'intensification** 

III.3 Critères d'efficacité énergétique

# • Étude et compréhension

o des structures d'un écoulement turbulent en présence de vorticité
o de leurs contributions aux phénomènes de transferts

## • Intensification par la vorticité

- du mélange
- $\circ$  des transferts thermiques

#### Perspectives

- Formes de perturbateurs combinant
  - le principe du jet
  - la génération de vorticité



Alben, JCP (2009)

• Perturbateurs flexibles - PIE VORFLEX









# Merci de votre attention

#### Thierry LEMENAND, Charbel HABCHI, Dominique DELLA VALLE, Hassan PEERHOSSAINI

LTN - Laboratoire de Thermocinétique de Nantes CNRS UMR 6607

Journée SFT « Échangeurs thermiques et multi-fonctionnels » 16 Mars 2011

27