Formation de macroségrégations pendant la solidification d'un alliage Pb-Sn : Synthèse des résultats d'un benchmark

- H. Combeau¹ M. Bellet² Y. Fautrelle³ D. Gobin⁴ –E. Arquis⁵ O. Budenkova³ B. Dussoubs¹ Y. Duterrail³ A. Kumar¹ S. Mosbah¹ M. Rady⁵ C.A. Gandin² B. Goyeau⁶ –M. Založnik¹
 - Institut Jean Lamour
 CEMEF
 SIMAP
 FAST
 TREFLE
 - 6 EM2C

Formation de macroségrégations pendant la solidification d'un alliage Pb-Sn : Synthèse des résultats d'un benchmark

- Introduction
- Définition du benchmark
- Analyse des résultats du benchmark
- Conclusions

Macrostructures et macroségrégations observées sur un lingot d'acier de 65 tonnes

lingot coulé par Mittal-Industeel (thèse T. Mazet)

15 Novembre 2011 (H. Combeau et col.) 3

Formation de canaux ségrégés

EPM

Les difficultés liées à la modélisation et à la résolution de ce type de problème

$$\frac{\partial}{\partial t} \left(\rho^{l} \vec{V} \right) + \frac{1}{g^{l}} \vec{\nabla} \left(\rho^{l} \vec{V} \cdot \vec{V} \right) = \vec{\nabla} \left(\mu^{l} \vec{\nabla} \left(\vec{V} \right) \right) - \frac{g^{l} \mu^{l}}{K} \vec{V} - g^{l} \vec{\nabla} p + \rho^{l} g^{l} \vec{g}$$

même ordre de grandeur que la taille du V.E.R.

0

0.2

0.4

Liquid fraction

0.8

0.6

Les difficultés liées à la modélisation et à la résolution de ce type de problème

Les métaux liquides ont un faible nombre de Prandtl

	Tm (°C)	Pr	Sc	Le
Al-Cu	600	6. 10 ⁻³	130.	2.1 10 ⁴
Fe-C	1500	0.1	30.	300.
Sn-Pb	232	4.7 10-3	~100	~2.1 10 ³

Favorable au développement d'instabilités hydrodynamiques

L'équation de conservation de la masse de soluté est hyperbolique (problème de fausse diffusion numérique) :

$$\frac{\partial}{\partial t} \left(\overline{C} \right) + \nabla \left(\vec{V} C_l \right) = 0$$

15 Novembre 2011 (H. Combeau et col.) 6

Objectifs du projet ANR blanc SMACS :

- Faire un benchmark numérique en solidification
- Réalisation d'expériences avec une métrologie fine et une caractérisation des structures de solidification, des macro et des mésoségrégations
- Confrontation modèle expérience

Benchmark numérique mené dans le cadre du projet SMACS

Site Web : www.ijl.nancy-universite.fr/benchmark-solidification/

15 Novembre 2011 (H. Combeau et col.) 8

Modèle imposé

Masse	$\nabla \cdot V = 0$
Quantité de mouvement	$\nabla \cdot (\mu_1 \nabla \mathbf{V}) - g_1 \nabla p - \frac{\mu_1 g_1}{K} \mathbf{V} + g_1 \tilde{\rho} \mathbf{g} = \rho_0 \frac{\partial \mathbf{V}}{\partial t} + \frac{\rho_0}{g_1} (\nabla \mathbf{V}) \mathbf{V}$
Energie	$\rho_0 \frac{\partial \langle \mathbf{h} \rangle}{\partial t} + \rho_0 c_p \nabla \mathbf{T} \cdot \mathbf{V} -\nabla \cdot (\mathbf{k} \ \nabla \mathbf{T}) = 0$
Soluté	$\frac{\partial \langle \mathbf{C} \rangle}{\partial t} + \nabla \mathbf{C}_1 \cdot \mathbf{V} = 0$
Microségré gation	$\langle \mathbf{C} \rangle = \mathbf{g}_1 \mathbf{C}_1 + \mathbf{g}_s \mathbf{C}_s = (\mathbf{g}_1 + \mathbf{k}_P (1 - \mathbf{g}_1))\mathbf{C}_1$ $\mathbf{T} = \mathbf{T}_m + \mathbf{m}\mathbf{C}_1$

Caractéristiques des codes de calcul utilisés dans ce benchmark

	Code de calcul	Maillage (taille moy. de maille (m))	Pas de temps (s)
CEMEF	R2SOL E.F. (SUPG)	46502 nœuds (2,5 x 10 ⁻⁴)	5 x 10 ⁻³
SIMAP EPM	FLUENT V.F. (2 nd order upwind)	200x240 (2,5 x 10 ⁻⁴)	5 x 10 ⁻³
IJL	SOLID V.F. (Upwind)	275x328 (1,8 x 10 ⁻⁴)	5 x 10 ⁻³
TREFLE	THETIS V.F. (TVD)	268x324 (1,9 x 10 ⁻⁴)	1 x 10 ⁻³
IJL	OpenFOAM (upwind et QUICK)	200x240 (2,5 x 10 ⁻⁴)	5 x 10 ⁻³

Evolution des valeurs Min et Max du champ de composition moyenne en Sn En fonction de la taille de maille pour les sept contributions

Position des min et max sur les cartes de composition finale

IJL :

- min = -5.86 x=32.875 mm y=0.125 mm (tout en bas, différent de IJL et CEMEF)
- max = 36.331 x=6.62 mm y=59.875 mm (en haut, coin gauche, proche I JL)

Evolution de l'indice de ségrégation en Sn en fonction de la taille de maille pour les sept contributions

Profils horizontaux suivant H2 de fraction liquide et de vitesse au temps 120 s

0,8

Comparaisons SIMAP t=5s

Comparaisons SIMAP t=10s

Comparaisons SIMAP t=15s

Comparaisons SIMAP t=20s

Comparaisons SIMAP t=25s

Evolutions temporelles T, gl, C, mod(V) au point E

An alternative test case of numerical prediction of macrosegregation

Miha Založnik¹, Gregor Kosec²

Institut Jean Lamour, Dép. SI2M - Ecole des Mines de Nancy Laboratory for Multiphase Processes, University of Nova Gorica, Slovenia

The configuration

Al-4.5wt% Cu, 2x2 cm mold Computational domain: 1x2 cm Solidification time: ~50 s Initial temperature: 700 °C Liquidus temp. (C_0): 644.565 °C Chill h.t.c.: 500 W/m²K Chill temp.: 20°C

Simpler macrosegregation map, mesosegregations do not develop.

Natural convection during the initial transient - Ra ~ 2500.

Evolution of the solidification

Characterizations of grid convergence

Comparison of the time evolutions

Comparison of the final segregation in six cross sections

Benchmarks sur la convection naturelle : point et poursuite

Miha Založnik Institut Jean Lamour, Dép. SI2M

Réunion SMACS, Paris, 21 juin 2011

Rappel A revised case definition after exploratory test computations

A2: $Ra = 5 \cdot 10^4$ (oscillatory periodic)

Transient cooperating thermosolutal natural convection

A = 1 $Pr = 10^{-2}$ $Le = 10^4$ (Sc = 10²)

old: $Ra_T = 5 \cdot 10^4$ N = 5 $(Ra_C = 2.5 \cdot 10^9)$

B1: $Ra_T = 5 \cdot 10^3$ N = 5(final steady state, predominantly thermal)

B2: $Ra_T = 5 \cdot 10^3$ N = 30(final steady state, thermosolutal structure)

Première comparaison - cas A2

Contributions prevues

Contributions de l'équipe SMACS

- IJL 2 ou 3 codes: code maison M. Založnik, Solid, OpenFoam (?)
- TREFLE Thétis
- SIMAP Fluent -> partie thermique, puis thermosolutale plus tard
- Autres ? -> Non.

Contributions externes ?

 (Ben Hadid), U. Nova Gorica/IJS (G. Kosec), Freiberg (P. Nikrityuk), Access (J. Jakumeit), SMMP Leoben (Wu), CETHIL (S. Xin), IUSTI, Sintef (K. Tveito, M. M'Hamdi), Purdue (M. Krane)...

Conclusions :

Les résultats obtenus à partir des différents codes conduisent à des valeurs très proches en terme de macroségrégations, mais des écarts sont observés au niveau de la prédiction des canaux ségrégés ;

Les canaux ségrégés sont beaucoup plus sensibles au maillage que la macroségrégation, la vitesse de convergence est d'un ordre plus petit que 1 en espace ;

Les macroségrégations se développent sur un intervalle large de fraction liquide [0,3;1], tandis que les canaux se forment aux fortes fractions liquides où des différences entre les champs de vitesse sont observées. Un benchmark convection naturelle à faible Pr et grand Le est en cours ;

Les écarts sur la composition se forment encore à des fractions liquides inférieures à 0,8 : très forte sensibilité du Gradient(T), différences induites par l'histoire ;

Sensibilité à l'ordre des schémas d'intégration en espace ;

000TREFLE

Difficulté d'arriver à une solution de référence du fait de la présence des canaux ségrégés;

Les premières confrontations modèle/expérience sont très encourageantes, mais d'autres difficultés apparaissent (conditions aux limites).

FPM

Merci pour votre attention

Matériaux 2010 (H. Combeau et col.) 37