C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows

Dealing with suprious behaviours Hydrodynamique de films liquides en présence de transferts de chaleur et/ou d'évaporation: prise en compte des effets Marangoni et couplage transferts-hydrodynamique

Christian Ruyer-Quil

lab. LOCIE USMB-CNRS Université Savoie Mont-Blanc

10/03/16

Sac

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with suprious behavio

2 Phenomenology

Contents

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows

Dealing with suprious behavior

Examples of processes involving falling films Food industry

concentration of milk by falling film evaporator

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with suprious behavior

Building industry¹

• cooling of building surfaces (latent heat)

¹He and Hoyano Energy and Building (2008)

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with

suprious behaviours

Waves and heat transfer enhancement²

(日) (日) (日) (日) (日) (日) (日) (日)

²Frisk and Davis IJHMT (1972)

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with suprious behav

Falling film hydrodynamics : Phenomenology

Position

Sac

surface tension σ , viscosity μ , density ρ , gravity ginclination angle β , inlet flow rate per wetted perimeter \bar{q}_N streamwise x, spanwise z, cross-stream y directions

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with suprious babavia

A series of symmetry breakings

C. Ruyer-Quil

Background

Phenomenology

C. Ruyer-Quil

Background

Phenomenology

Heated film flows 2D flows 3D flows Dealing with suprious behavior

Noise-driven dynamics

Kapitza experiments³ alcohol film on vertical wall Re = 6.07, $\Gamma = 529$, length L = 80 cm, decelerated 8 times

³Kapitza & Kapitza Zh. Ekper.Teor. Fiz. 19, 105-120 (1949) = → (= → (= →) < ⊙ < ⊙

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behaviou

Heated flim flows⁴

specified temperature : ST case

specified flux : HF case

⁴Kalliadasis et al. JFM (2003) ; Ruyer-Quil et al. JFM (2005) ; Scheid et al. JFM (2005) ; Trevelyan et al. JFM (2007) ; Scheid et al. Europhys. Lett. (2008); Scheid et al. PRE (2008)

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behaviou

Evaporation ? : a very crude modelling

- evaporation is modelled through a constant heat transfer coefficient α and Newton's law of cooling $-\lambda \nabla T \cdot \mathbf{n} = \alpha (T T_0)$
- this assumption works well is the atmosphere can be assumed to be passive (contant pressure, no shear) and the vapor is dilute (only diffusion)
- a better description is a wevenumber dependency of α^5

⁵H. Machrafi, A. Rednikov, P. Colinet and P.C. Dauby, PRE **91** (2015) - E - O Q C

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behaviour

Reduced parameters

Shkadov notations (Shkadov, 1977)

length scale h_N in the *y* direction stretched length scale κh_N in the *x* and *z* directions κ tuned such that $g \sin \beta$ and $\sigma \partial_{xxx} h$ are of same order $\sim \kappa = W e^{1/3} = (I_c/\bar{h}_N)^{2/3}$

- reduced Reynolds number $\delta = h_N^3/\kappa = 3Re/\kappa$ with $h_N = \bar{h}_N/l_v$ and $l_v = v^{4/3}/(g\sin\beta)^{1/3}$ ⁶ which measures inertia
- viscous dispersion parameter $\eta = 1/\kappa^2 \ll 1 = (\bar{h}_N/l_c)^{4/3}$ compares elongational viscosity and capillary damping
- reduced inverse slope $\zeta = \cot \beta / \kappa$
- modified Marangoni number $M = Ma/\kappa = \frac{\gamma \Delta T}{\rho g h_{\kappa}^2 \sin \beta} \frac{1}{\kappa}$
- Biot number (Newton's law of cooling)

$$\mathbf{B} = \mathbf{B}ih_{\mathrm{N}} = \frac{\alpha \bar{h}_{\mathrm{N}}}{\lambda} = \frac{\alpha l_{v}}{\lambda}h_{\mathrm{N}}$$

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behavior

Low dimensional modelling

evolution equations for thickness *h*, flow rate **q** and temperature at free surface $\theta \equiv T(y = h)$

$$\begin{split} \delta \partial_t \mathbf{q} &= \frac{5}{6}h \, \mathbf{i} - \frac{5}{2} \frac{\mathbf{q}}{h^2} \boxed{-\frac{5}{4} M \nabla \theta} + \frac{5}{6}h \nabla (\nabla^2 h) \\ &+ \delta \left[\frac{9}{7} \left(\frac{\mathbf{q} \cdot \nabla h}{h^2} - \frac{\mathbf{q}}{h} \cdot \nabla \right) \mathbf{q} - \frac{8}{7} \frac{\nabla \cdot \mathbf{q}}{h} \mathbf{q} \right] \\ &+ \eta \left[\frac{13}{4} \frac{\mathbf{q} \cdot \nabla h}{h^2} \nabla h + \frac{13}{16} \left(\frac{\nabla h}{h} \cdot \nabla \mathbf{q} - \frac{\nabla \cdot \mathbf{q}}{h} \nabla h \right) \right. \\ &+ \frac{3}{4} \frac{\nabla h \cdot \nabla h}{h^2} \, \mathbf{q} - \frac{23}{16} \frac{\nabla^2 h}{h} \, \mathbf{q} - \frac{73}{16} \left(\frac{\mathbf{q}}{h} \cdot \nabla \right) \nabla h \\ &+ \frac{7}{2} h \nabla \cdot \left(\frac{\nabla \mathbf{q}^T}{h} \right) + h \nabla \cdot \left(\frac{\nabla \mathbf{q}}{h} \right) \right], \end{split}$$

where $\nabla = (\partial_x, \partial_z)$, $\mathbf{q} = (q, p)$ and **i** is the streamwise unit vector.

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behavio

averaged energy balance :

$$Pr\delta \partial_t \theta = 3 \frac{(1-\theta-Bh\theta)}{h^2} + Pr\delta \left[\frac{7}{40} (1-\theta) \frac{\nabla \cdot \mathbf{q}}{h} - \frac{27}{20} \frac{\mathbf{q} \cdot \nabla \theta}{h} \right] + \eta \left[\nabla^2 \theta + \frac{\nabla h \cdot \nabla \theta}{h} + (1-\theta) \frac{\nabla^2 h}{h} + \left(1-\theta - \frac{3}{2}Bh\theta \right) \frac{\nabla h \cdot \nabla h}{h^2} \right]$$

mass balance :

 $\partial_t h = -\nabla \cdot \mathbf{q}$

(日)

coherent model at $O(\varepsilon)$ [$O(\varepsilon^2)$ for diffusion terms]

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows 3D flows Dealing with suprious behaviou

- extension to $O(\varepsilon^2)$ is possible
- intoduction of secondary fields to account for departures from parabolic velocity profile and linear temperature distribution:
 9 scalar equations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Padé-like regularization technique (𝔅₀ = 𝔅⁻¹𝔅) : coherent O(ε²) model in terms of 4 equations

hierarchy of models in terms of complexity and accuracy

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with suprious behaviours

2D flows : Solitary wave solutions

speed

maximum height

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with suprious behaviours

streamlines in moving frame (above) and isotherms (below) (Re, Ma) = (0.01, 50), Bi = 0.1, Pr = 7.

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with suprious behaviours

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with suprious behaviours

(Re, Ma) = (3, 0)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

formation of a thermal boundary layer spurious behaviour: free-surface temperature lower than air temperature

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

3D flows: simulations in a periodic domain

Re=0.5, *Ma*=25, *Bi*=0.1, *Pr*=7 and Γ=3375 (water)

 $t = 950 - \{0.991, 1.009\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $t = 450 - \{0.998, 1.002\}$

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with

$$t = 1450 - \{0.957, 1.044\}$$

 $t = 1950 - \{0.931, 1.071\}$

(日)

590

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

 $t = 2450 - \{0.899, 1.101\}$ $t = 3450 - \{0.692, 1.334\}$ Compettion between Marangoni instability (isotropic) and Kapitza insatbility (aligned with flow) leads to channeling phenomena

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

(a) I: $Re = 0.5, t = 4552 - \{0.034, 2.355\}$

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows Dealing with

Dealing with suprious behaviours

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

(b) II_r: Re = 2, $t = 6120 - \{0.004, 2.799\}$

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

(c) II_m:
$$Re = 4$$
, $t = 9510 - \{0.067, 3.371\}$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

990

8

(d) III: Re = 5, $t = 20000 - \{0.752, 1.612\}$

C. Ruyer-Quil

Background

Phenomenology

Heated film

2D flows

3D flows

Dealing with suprious behaviours

Modelling: initial 3eqn formulation

ъ

Sac

• problem: divergence of free-surface temperature !

C. Ruyer-Quil

Background

Phenomenology

Heated film

2D flows

3D flows

Dealing with suprious behaviours

Modelling: Saint-Venant

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- solution: convection terms rewritten to assure compatibility with limit $Pe \gg 1$
- simplest model (3 variables)
- more complex model (4 variables): height (*h*), flow rate (*q*), free-surface temperature (θ), wall flux (φ/h)

C. Ruyer-Quil

Background

Phenomenology

Heated film

2D flows

3D flows

Dealing with suprious behaviours

Modelling: 3eqn model

At Prδ ≪ 1 we shall have ∂_tθ + u(y = h)∂_xθ = O(1/(Prδ))
modification of convection terms

$$\frac{99}{30} \Pr \delta \left[\partial_t + \frac{3q}{2h} \partial_x \right) \left(\theta - \frac{7}{22} \ln \theta \right) = 3 \frac{\left[1 - (1 + Bh)\theta}{h^2} + \eta \left\{ \left(1 - \theta - \frac{3}{2} Bi h\theta \right) \left(\frac{\partial_x h}{h} \right)^2 + \frac{\partial_x h \partial_x \theta}{h} + (1 - \theta) \frac{\partial_{xx} h}{h} + \partial_{xx} \theta \right\}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

C. Ruyer-Quil

Background

Phenomenology

Heated film

2D flows

3D flows

Dealing with suprious behaviours

Modelling: 3eqn model

• no more divergence of the temperature !

Bi = 1, Pr = 7

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$Re = 15, Pe = 460, Bi = 0.1, f = 9.4$$
 Hz steamlines (moving frame)

DNS

model

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

Re = 15, Pe = 460, Bi = 0.1, f = 9.4 Hz isotherms and heat flux density

DNS

model (θ)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modelling: 3eqn model

C. Ruyer-Quil

Background

Phenomenology

Heated film

nows

2D flows

Dealing with

suprious behaviours

Bi theta

0.22

0.21 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 h

Re = 15, Pe = 460, Bi = 0.1, f = 9.4 Hz heat flux density (temperature) at free surface 1 eqn for θ

C. Ruyer-Quil

Background

Phenomenology

Heated film

2D flows

3D flows

Dealing with suprious behaviours

Modelling: 3eqn model

- impossibility to capture correctly the onset of thermal sublayer at free surface (competition convection-heat transfer)
- Pb: critical temperature $\theta_c = 7/22 \approx 0.32$ at which convection terms (unphysically) disappears...
- crude representation of temperature field
- solution: add more fields...

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

•

Modelling: 4eqn model

introduce φ = h∂_yT|_{y=0}
thus (∂_t + u(y = h)∂_x)θ = O(1/Pe) and ∂_t(φ/h) = O(1/Pe) at Pe ≪ 1

$$T = T^{(0)} + \left(\theta - T^{(0)}|_{y=h}\right) f_1(\bar{y}) + \left(\varphi - h\partial_y T^{(0)}|_{y=0}\right) f_2(\bar{y}) + h.o.t.$$

with $\bar{y} = y/h$, $f'_1(0) = 0$ and $f_2(1) = 0$

 weights w₁ = ȳ and w₂ = 1 − ȳ are determined so that h.o.t. need not to be determined to assure consistancy at O(ε)

$$T = 1 + \left(\frac{1}{1 + Bih} - 1\right)\bar{y} + \left(\theta - \frac{1}{1 + Bih}\right)\bar{y}^2 + \left(\theta + \frac{Bih}{1 + Bih}\right)\left(\bar{y} - \frac{3}{2}\bar{y}^2 + \frac{1}{2}\bar{y}^3\right)$$

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

Modelling: 4eqn model

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

R_i = ⟨heat|*w_i*⟩ = 0 contain convection terms ∝ *Pe*, say *R_i^(conv) R_i^(conv)* are rewritten as I.c. of ∂_t + (3q/(2h)∂_x)θ and ∂_t(φ/h)

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

Modelling: 4eqn model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Re = 15, Pe = 460, Bi = 100, f = 12.6 Hz isotherms and heat flux density model (θ and $\phi = h\partial_{\gamma}T(\gamma = 0)$)

DNS

C. Ruyer-Quil

Background

Phenomenology

Heated film

Dealing with suprious behaviours

Re = 15, *Pe* = 460, *Bi* = 0.1, *f* = 9.4 Hz isotherms and heat flux density

DNS

model (θ and ϕ)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

Conclusions

- simple models enable to capture hydrodynamics (amplitude, form, wave speed)
- · reasonable representation of free-surface temperature
- low numeraical cost enable to silulate 3D flows on complex or large domains

C. Ruyer-Quil

Background

Phenomenology

Heated film flows

2D flows

3D flows

Dealing with suprious behaviours

Thank you ©.

(ロ)、(型)、(E)、(E)、 E、のQの