

Rôle de l'humidité sur les propriétés thermiques et électriques de zircones poreuses

Mouna Zouaoui, Benoit Nait-Ali, Nicolas Glandut, David Smith

SFT – Journée thématique : Propriétés thermiques et électriques des nano et microcomposites –8 janvier 2015

1

Contexte

- Procédure expérimentale
- > Résultats λ , ϵ
- > Modélisation analytique de λ et ϵ
- Etude de la localisation de l'eau
 - Mécanismes d'adsorption
 - Mesures d'impédance complexe

Conclusion

- Développement d'isolants thermiques performants : réduction des consommations d'énergie

- Développement d'isolants sans fibre
- Détermination des besoins en énergie d'un procédé

Contexte

- Propriétés physiques souvent mesurées sans se soucier de l'humidité relative

Matériau poreux

Isotherme de sorption

- Comprendre le rôle de l'eau sur les propriétés thermiques et électriques, Conductivité thermique, chaleur spécifique, conductivité électrique, constante diélectrique

Applications :

- Maîtrise des propriétés dans des conditions d'usage
- Etude du séchage d'un matériau céramique
- Capteurs

Procédure expérimentale

1- Poudre de zircone stabilisée à 8% mole Y_2O_3 (YSZ)

2- Pressage uniaxial (200 MPa, 30 s)

3- Traitement thermique :

Traitement thermique	Crue	400°C	800°C	1000°C
Porosité	55%	52%	51%	33%
Surface spécifique (m².g ⁻¹)	170	123	53	12

4- Etuve 110°C, 48h

5- Humidité Relative (HR) contrôlée (5 jours)

	Gel de silice	Chlorure de lithium (LiCl)	Carbonate de potassium (K ₂ CO ₃)	Chlorure de sodium (NaCl)	Chlorure de potassium (KCI)	Eau désionisée
HR	4%	11%	43%	75%	85%	100%

Procédure expérimentale

- Teneur en eau après stabilisation de la masse

Résultats

- Effet de l'eau sur la conductivité thermique

- Diffusivité thermique, α , mesurée par la méthode flash laser
- Conductivité thermique : $\underline{\lambda = \alpha. \rho. c}$, ρ : masse vol., c : chaleur spécifique

Résultats

- Effet de l'eau sur la constante diélectrique
 - Mesure de ϵ à 200 MHz et à 20°C

Augmentation de la constante diélectrique effective avec la teneur en eau 8

Limite supérieure de Hashin & Shtrikman (HS)

Pores assimilés à des inclusions sphériques isolés entourés d'une calotte de matrice solide.

Model de percolation

Pores distribués de manière aléatoire et interconnectés, en accord avec une porosité de type ouverte.

Expression de Landauer : $\lambda = \frac{1}{4} \left[\lambda_s (2 - 3v_p) + \lambda_p (3v_p - 1) + \left([\lambda_s (2 - 3v_p) + \lambda_p (3v_p - 1)]^2 + 8\lambda_p \lambda_s \right)^{\frac{1}{2}} \right]$

9

ZrO₂ (8% mol Y₂O₃) porosité non ordonnée

Conductivité thermique d'échantillons de zircone stabilisée, avec une <u>porosité non ordonnée</u> (obtenue par pressage avec un agent porogène + traitement thermique) Phase solide : ZrO_2 (8% mol Y_2O_3), $\lambda_s = 1,9$ W.m⁻¹.K⁻¹

Mousse de Kaolin, porosité ordonnée

Conductivité thermique de mousses de kaolin, avec une <u>porosité ordonnée</u> Phase solide : kaolin, $\lambda_s = 0,63 \text{ W.m}^{-1}.\text{K}^{-1}$

Porosité non ordonnée : bonnes prédictions avec Landauer jusqu'à 65% de porosité.¹

Porosité ordonnée (mousses) : bonnes prédictions avec la limite sup HS jusqu'à 95% de porosité.²

1. B. Nait-Ali, et. al., *Journal of the European Ceramic Society*, **26**, (2006) 3567–3574 2. J. Bourret, et. Al., *Journal of the European Ceramic Society*, **33**, (2013) 1487–1495

<u>Hypothèse</u> : l'eau s'adsorbe à la surface du solide sous forme de couches moléculaires

Les mêmes expressions sont utilisées pour la constante diélectrique

Surface d'encombrement d'une molécule d'eau⁴ : 0,106 nm²

Nombre de couches moléculaires à la surface du solide (hypothèse : adsorption de couches moléculaires)

HR	crue	400°C	800°C	1000°C
4%	0.2	0.3	0.4	0.5
11%	0.7	0.7	0.7	0.8
43%	1.1	1.0	1.0	1.1
75%	2.4	2.7	1.5	1.2
85%	3.2	3.9	3.2	1.6
100%	3.5	4.2	7.6	12.1

<u>Pour HR<43%</u>, la contribution de l'eau sur λ et ϵ est prise en compte même si la teneur en eau ne permet pas d'avoir une couche complète adsorbée sur le solide

- Passage progressif d'un comportement diélectrique à un conducteur protonique.

Investigation par des mesures d'impédance complexe de 50Hz à 500kHZ

Diagrammes de Nyquist à 20°C de 50 Hz à 500 kHz

Nombre de couches moléculaires à la surface du solide

HR	crue	400°C	800°C	1000°C
4%	0.2	0.3	0.4	0.5
11%	0.7	0.7	0.7	0.8
43%	1.1	1.0	1.0	1.1
75%	<u>2.4</u>	<u>2.7</u>	1.5	1.2
85%	3.2	3.9	<u>3.2</u>	1.6
100%	3.5	4.2	7.6	<u>12.1</u>

Passage d'un comportement diélectrique à un <u>conducteur protonique à</u> <u>partir de la deuxième couche</u> moléculaire adsorbée.

Conductivité thermique et constante diélectrique augmentent fortement avec la teneur en eau,

> Résultats expérimentaux en accord avec les prédictions analytiques

- Hypothèse de couches moléculaires à la surface du solide
- Limite supérieure de Hashin & Shtrikman -> λ ou ϵ des pores
- Percolation -> λ ou ϵ effective

Selon les mécanismes d'adsorption, passage d'un comportement diélectrique à un conducteur protonique à partir de la 2^{ème} couche

Vérifié expérimentalement par des mesures d'impédance complexe

Merci pour votre attention