

Polymères chargés bons conducteurs de chaleur: rêve ou réalité ? - Conception, réalisation et analyse multi-échelle -

B. Garnier, F Danès

Laboratoire de Thermocinétique, UMR CNRS 6607 Polytech 'Nantes

JSFT 8 janvier 2015

• Objectifs:

amélioration de la conductivité des matériaux <u>thermoplastiques</u> par l'ajout de charge conductrice de chaleur

• Défi* :

conductivité thermique effective transversale λ : de 0.2 (polymère) à 2 W/ m
K voir plus (4 à 6 W/m K ?)
sans dégradation importante des propriétés mécaniques
maintien d'un coût modéré

• Applications :

Echangeurs de chaleur, drains thermiques (automobile, électronique, électrotechnique...)

*:"High Thermal Conductivity Thermoplastic Compounds", Craft BRST - CT98-5302, Eur. Commis. DG12- HIAS, Nov. 1998/2001

Etat de l'art

•La difficulté de réaliser des polymères chargés bons conducteurs croit dans l'ordre suivant: encres, colles, élastomères, thermodurcissables et *thermoplastiques*

• Conductivité thermique de quelques thermoplastiques chargés :

	Matrice (λ,/ W.m ⁻¹ K ⁻¹)	Charge (λ, ,/ W.m ⁻¹ K ⁻¹)	Forme	Taille µm	charge % vol.	$\lambda_{t,eff}$ W.m ⁻¹ K ⁻¹	Ref.
1	PE (0.26)	graphite (210)	poudre	·	30	1.8	Agari 1986
2	PE (0.26)	Cu (390)	poudre		30	1.25	Agari 1986
3	PE (0.26)	$Al_{2}O_{3}(33)$	poudre		33	0.75	Agari 1986
4	PP (0.26)	Al (220)	fibre	100/1250	15	0.72	Bigg 1986
5	PP (0.26)	Al (220)	fibre	100/1250	18.3	2.2	Bigg 1986
6	PE (0.47)	CaC0 ₃ (4,7)	poudre		47	1.25	Barta 1997
7	PC (0.19)	C(210)	fibre	8/ 3000	44	0.5	Srivastava 1997
8	PE (0.50)	Al (220)	poudre	40 80	33	3.6	Tavman 1996

PC-polycarbonate, PE- polyéthylène, PP – polypropylène

GARNIER B., AGOUDJIL B., BOUDENNE A., Chap.18, pp.575-612, "Metallic particle filled polymer micro composites" in Polymer Composites: Volume 1, 1st ed, Ed.by Sabu Thomas, et al. 2012 Wiley-VCH Verlag GmbH & Co. KGaA 1- Facteurs modifiés lors des essais et résultats *

2- Modélisation de la conductivité thermique effective

3- Résistance thermique de contact inclusion/matrice

*: "High Thermal Conductivity Thermoplastic Compounds", Craft BRST - CT98-5302, Eur. Commis. DG12- HIAS, Nov. 1998/2001

1- Facteurs modifiés lors des essais et résultats

La conductivité thermique effective λ_t dépend de:

- la nature de la matrice,
- la nature, la taille, la forme et le taux volumique des inclusions,
- la <u>nature</u> et le taux volumique de <u>tensioactif</u>,
- des conditions de mise en œuvre (durée et intensité du mélangeage, température.) et
- des conditions de mise en forme (procédés de moulage, géométrie du moule,

épaisseur de la pièce....)

Effet de la nature et de la forme des inclusions

- Matrice polymère: polybutylene terephatalate PBT
- Mise en œuvre et mise en forme : procédés semi -industriels

Charge	Noir de fumée CB	Poudre d'aluminium*		Fibre d'aluminium ALF1*		Fibre d' aluminium ALF2*		Poudre d'aluminium + ALF1 + CB
φ, % en masse	12	27	41	27	41	37	61	16-15-2.7
$\lambda_{t,eff}$, W/ m K	0.37	0.48	0.79	0.49	0.92	0.61	1.42	0.5

*: Al. powder (aver. diam.: 300µm), ALF1 fiber (diam.: 150µm, length: 1.1mm), ALF2 fiber (diam.: 90µm, length: 1.1mm)

 $PBT+ fibres d'aluminium \begin{cases} ALF1: diam.160 \mu m \\ ALF2: diam.90 \mu m \end{cases}$

Garnier et al, Int J Thermophysics 2003

Effets des surfactants

Les surfactants (0.15% en masse) semblent augmenter la conductivité thermique

Uniformité de la distribution du taux de charge et des propriétés therm. et elect.

Danès et al., Comp. Sci. Techn. 2005

y/L

0.5

0 8

-0.5

injection

11

6

2

12

10

12

L=100mm

*: rapportée à la valeur moyenne dans la pièce

13

5

9

x/L

15

7

3

*: rapportée à la valeur moyenne dans la pièce

s: écart standard des mesures locales / moyenne de la pièce 10

Orientation des fibres et anisotropie des pièces

2- Modélisation de la conductivité thermique effective

•Les modèles physiques macroscopiques actuels (empiriques, semi empiriques) sous estiment λ_t pour $\lambda_t/\lambda_{matrice} > 3$

Modèles (bornes inférieures):

- a: Wiener 1912
- b: Hatta et Taya 1985
- c: Maxwell-Eucken 1932
- d: Nielsen 1974
- e: Hashin et Shtrikman 1962

Modélisation numérique (Eléments finis)

For the 3D finite element study of the effective thermal conductivity, we considered:

- the stationary heat conduction equation
- -a tetragonal lattice of spherical inclusions of equal size
- a thermal contact resistance between inclusion and matrix
- adiabatic conditions for all faces except the top and bottom ones (i.e. for z=-b and z=b)

Elementary cell:

sphere of radius *a* centered in a tetragonal cell of dimensions: $2a \times 2a \times 2b$

Main features of the adopted model

The filler amount φ is correlated *(tetragonal cell) to B* by: $\varphi = \frac{sphere \ volume}{cell \ volume} = \frac{\pi}{6(1+B)}$

Finite element (Comsol Multiphysics, 48000 to 58000 tetrahedra, Lagrange multipliers)

Distribution of longitudinal heat flux

The dimensionless heat flux J_Z crossing the elementary cell is calculated by:

Fig. 2 : Reduced heat flux J_Z vs D on the line (X=0, Y=0, Z=1.001) and (X=1, Y=0 Z=1.001)

Validation of the numerical results

#	Parameters		Computed		Bibliographic source	This	Discrepancy %		
	В	С	D	entity	autho r	Computing	value	WOIK	
1	0	0	0	$\partial E / \partial \ln B$	[30]	analytic local	-1.571	-1.560	.8
2	0	0	.1	E	[27]	analytic global	3.47	3.473	.1
3	0	0	70000	E	[27]	analytic global	.344	.344	0
4	.7	0	0	E	[32]	finite elements	.48	.47	2.1
5	0	.5	.00001	E	[18]	analytic global	1.4478	1.44820	.04
6	0	.5	.1	E	[18]	analytic global	1.3135	1.31363	.01
7	0	2	.00001	E	[18]	analytic global	.7174	.71077	.05
8	0	3	.1	Ε	[18]	analytic global	.5910	.59183	.13

[18]: Cheng H.1997 ; [27]: Sangani A. 1982; [30]: Batchelor G.1977; [32]: Filip C. 2004

 \rightarrow One can infer that the discrepancy is within 0.1% for *E* and within 1% for the slopes of *E* .vs. the logarithm of factors.

Magnitude effects

Fig. 4: Effective conductivity E vs. B with B >> {C,D}

Filp C., Garnier B., Danes F., J Heat Transfer 2007

Effet de l'épaisseur de la paroi des billes creuses en aluminium (paramètre F)

Fig. 7 : Effet de l épaisseur de la paroi des billes creuses

а

Fig. 5: Weights of pure factors B, C, and D within the total variation of the effective longitudinal conductivity E, at nearby equal values of the three factors

19

3- Résistance thermique de contact (RTC) inclusion/matrice

SEM analysis of the Aluminum/ PBT polymer interface

→ Comment mesurer localement la RTC particules d'aluminium / matrice polymère ?

Literature review on microscale methods for particle/ matrix thermal contact resistance measurement:

- methods with contact: the probe sample TCR does not appear to be much lower than the particle/matrix TCR under investigation

-modulated thermoreflectance: some order of magnitude for TCR at grain boundaries in aluminum nitride (Pelissonnier 1996)

→Not much TCR values between constituents were measured locally in polymer matrix composites

"Microphotomètre à pointe"

Fig. 1 : *TCR measurement procedure*

- Heating: modulated laser pump beam
- •Phase lag temperature measurement: thermocouple with a nickel thin film (14nm thick) and a platinum wire (2 µm dia.)

Experimental setup

23

Platinum wire 2 µm dia.

Heat transfer model

 \rightarrow Temperature phase lag ψ : $\psi = arg(\theta)$.

TABLE I: ESTIMATED PARTICLE/MATRIX THERMAL CONTACT RESISTANCE

f, Hz	0.1	0.2	0.5	1	2
R_c , 10 ⁻⁵ m ² K/W	3.6	3.0	3.3	5.2	5.4

Average TCR value for PBT/alum. fiber:

$$R_{c} = (3.81 \pm 0.59).10^{-5} \text{ m}^2.\text{K}.\text{W}^{-1}$$

Macroscopic technique for TCR measurement between a wire and the surrounding matrix

EXPERIMENTAL SETUPS:

Three experimental setups with nickel wires of $\phi = 25$, 50 and 125 µm

Sensitivity analysis

 \longrightarrow For $R_c \cong 10^{-5} m^2 K / W$: the best heating time is 10ms

Results

Figure 6. Measured and calculated temperatures, electrical power and residuals (wire with a 125µm diameter- test #1).

Results

TABLE II. MEASURED THERMAL CONTACT RESISTANCES BETWEEN NICKEL WIRES AND EPOXY RESIN

Test	1	2	3	4	5	Averaged R _c
$R_{c_{,}} 10^{-5} \text{ m}^2.\text{K/W}(25 \mu \text{m wire dia.}),$	0.427	0.638	0.469	0.628	0.534	0.54
$R_{c_{,}} 10^{-5} \text{ m}^2.\text{K/W}(50 \mu \text{m wire dia.}),$	1.28	1.66	1.63	1.83	2.08	1.70
R_{c} ,10 ⁻⁵ m ² .K/W (125µm wire dia.)	4.51	4.42	4.30	5.73	3.92	4.58

30

Future work :

1)
$$TCR_{macro} = TCR_{micro}$$

Thermal microscopes

Future work :

2) Thermal contact resistance between 300 μ m carbon particle and copper matrix ?

Nickel wire diam 20µm

Ultrasonic welding (Nickel wire diam 20µm)

Conclusion

• The greatest transversal thermal conductivity obtained here is 2.2 W/ m K

(PBT + 43% vol. aluminum fiber – av. length 1.1 mm and av. diameter 0.09mm-)

- Further improvements (higher λ , better uniformity) could come from:
 - 1. Polymer blend
 - 2. Foam like metallic filler
 - 3. Surfactant (?)
 - 4. Further decrease of the filler size