

UNIVER**SITÉ** 

## **PROPRIETES THERMIQUES ET ELECTRIQUES DES NANO ET MICROCOMPOSITES**

### Abderrahim BOUDENNE

Université Paris-Est Créteil (UPEC)/CERTES France

Journée Thématique SFT, Paris 8 janvier 2015

# Composites polymères/charges conductrices

### **Charges conductrices**



PP/Cu



**PVC/MWCNT** 

### **Charges isolantes métallisées**



**EVA/Wollastonite-Ag** 



HDPE/PA-Ag

# Composites polymères/charges conductrices

### Modélisation $\lambda$ de la charge

**EVA/Wollastonite-Ag** 







HDPE/PA-Ag





# Composites polymères/charges conductrices

### Modélisation $\lambda$ des composites

### Modèles numériques



#### Effet de la concentration en charges



#### Effet de la résistance de contact



# Biocomposites et matériaux à base de fibres naturelles

### **Composites à matrices polymères/fibres naturelles**

Fibres: Ananas, Banane, Sisal, ...





### **Biocomposites et matériaux à base de** fibres naturelles

### **Composites à matrices minérales/fibres naturelles**



### **FPD: Fibres de Palmier Dattier**





UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

Optimisation des propriétés thermophysiques et électriques des composites à matrice polymère par application d'un champ magnétique

### Abderrahim BOUDENNE

Université Paris-Est Créteil (UPEC)/CERTES France

Journée Thématique SFT, Paris 8 janvier 2015

Polymers are materials with low value of thermal conductivity



**Increase thermal properties for industrial applications** 

**Combine polymeric matrix with conductive fillers** 

Develop new materials with properties adapted to specific applications

### Polymer Composites with conductive fillers: Bibliographic Statistics

Source: Web of Knowledge (Thomson Reuters 2014)



Year

Aims

## How optimize the conductive properties of polymer composite materials?



## Use an electric and magnetic field during the preparation of the composites

### **Samples preparation**

Matrix: Silicone Rubber Fillers: Ni (10µm)

From 0 to 35% vol. Ni 🗲 in Silicone Rubber Matrix



### **Micrograph structure**

### Matrix: Silicone Rubber Fillers: Ni (10µm)







Without magnetic field

### **Specific heat capacity**



### **Thermal Conductivity**





Thermal conductivity experimental setup based on (HGP) method



**Effect of Ni vol. (%)** 

**Effect of Ni distribution** 

**Same behavior (thermal conductivity and diffusivity)** 

### **Thermal Conductivity**



### **Thermal Conductivity models**



\* Structure effect with gradual reduction of  $\lambda$  when Ni increase

### **Electrical behavior**



<u>Area I</u> – the composite is nonconductive, the matrix includes the separate particles of conductive filler.

<u>Area II</u> – the region of percola-tion, the conductive cluster is created, the conductivity sharply increases at  $\varphi$ >  $\varphi_c$ .

**<u>Area III</u>** – the conductivity slowly increases because of growth of conductive cluster.

### **Electrical behavior**

### **Electrical Conductivity**

- **Effect of Ni**
- **Effect of Ni distribution**



### Conclusion

- Combination of polymers with conductive fillers allows an increasing of both thermal and electrical properties
- Effect of Ni content on  $\lambda$ ,  $\alpha$ , cp and  $\sigma$
- Effect of Ni distribution (orientation) on  $\lambda$ ,  $\alpha$ , and  $\sigma$
- Use of a magnetic field during the preparation of the composites  $\rightarrow$  enhancement of the conductivities ( $\lambda$ ,  $\sigma$ ) and  $\alpha$

