Journée Thématique de la Société Française de Thermique

Journée d'échanges Université-Industrie sur les Piles à Combustible et les Systèmes Pile à Combustibles

4-5 Avril 2006

Mini-échangeur de chaleur pour le refroidissement des plaques bipolaires de PEMFC

B. Auvity, Y. Lasbet, C. Castelain & H. Peerhossaini

Laboratoire de Thermocinétique de Nantes (CNRS-UMR 6607) Ecole Polytechnique de l'Université de Nantes

École polytechnique

Pourquoi et **comment** refroidir un stack PEMFC?

Pourquoi? Si l'eau est produite sous forme de vapeur, théoriquement E = 1,25VDue aux irréversibilités, la pile délivre $V_c < E$

Puissance thermique dégagée par la pile : $P_{th} = n.I.(1,25-V_c)$ = $P_e.(1,25/V_c-1)$ avec Vc~0.65V

Autant de Watts thermique et électrique produits

Comment? Dépend de la puissance électrique délivrée par le stack :

École polytechnique

- pour $P_e < 100W$, refroidissement par convection naturelle autour de la pile et par les flux de gaz internes.

- pour $100W < P_e < 2-3kW$, nécessité d'un refroidissement

additionnel par circulation forcée d'air de part et d'autre des plaques bipolaires

- pour $P_e > 5$ kW, refroidissement par eau indispensable

(possibilité de valoriser l'énergie thermique -système de cogénération)

Revue bibliographique des études antérieures ou en cours

Une seule référence bibliographique à notre connaissance S.M. Senn & D. Poulikakos – ETH Swiss Federal Institute of Technology Zurich *Journal of Power Sources*, 130 (2004), 178-191

Cahier des charges pour un échangeur thermique à insérer dans les plaques bipolaires

Au-delà d'une grande capacité d'échanges thermiques (intensification des transferts), il faut :

- 1 Assurer une bonne homogénéité de température sur la surface de la membrane
- 2 Minimiser l'épaisseur de l'échangeur (résistivité électrique)
- 3 Minimiser la perte de charge le long de l'échangeur (efficacité globale du système pile)

École polytechnique

- 4 Travailler dans un régime d'écoulement laminaire Re $\sim 200.$
- 5 S'assurer d'une réalisation relativement aisée de l'échangeur (coût et temps d'usinage)

Présentation du calcul numérique

-Résolution des **équations de Navier-Stokes** et de l'**énergie** à l'aide du solveur généraliste Fluent en régime d'écoulement laminaire pour un **mono-canal**

Problème thermique

-Conditions de flux aux parois imposées $\varphi = 10\ 000\ \text{W/m}^2$ -Evaluation du nombre de Nusselt local: $Nu = \frac{\varphi}{T_m - T_p} \cdot \frac{D_h}{\lambda}$ avec T_m, température de mélange T_p, température de paroi λ , conductivité thermique du fluide D_h, diamètre hydraulique

Problème hydrodynamique

-Conditions en entrée : écoulement hydrodynamiquement établi avec $R_e = 200$ -Evaluation du coefficient de frottement: $f = -\left(\frac{dp}{ds}\right) \cdot \frac{D_h}{\frac{1}{2} \cdot \rho \cdot U_m^2}$ avec s, abscisse curviligne U_m , vitesse débitante : $U_m = \frac{1}{A_c} \cdot \iint_{A_c} u \cdot dA_c$

-Pour toutes les géométries considérées, même diamètre hydraulique : $D_h = 1,33$ mm

a = 1 mm; b = 2 mm

École polytechnique de l'université de Nantes- Longueur dépliée d'une période géométrique : 18 mm K

a

Résultats thermiques

Comparaison des performances thermiques du tube droit, du "C-shape-2D"et du "C-shape"

Résultats hydrodynamiques

Comparaison des pertes de charges du tube droit, du C-shape 2D et du "C-shape"

- Tube droit : validation du code

<u>École</u> **polytechnique** de l'université de Nantes

- La perte de charge la plus forte est obtenue pour le "C-shape"

Résultats encourageants et pertinents dans un objectif de refroidissement des Piles à Combustible

à paraître dans Journal of Power Sources (2006)

Classification des géométries

	Nusselt, Nu	Poiseuille, Po = f.Re	Po/Nu
Straight channel	3.0	62	20.7
C-Shape2D	11.0	126	11.5
C-shape	20.0	160	8
W-shape	13.0	93	7.2
V-shape	13.1	89	6.8

Comparaison du nombre de Nusselt moyen, du nombre de Poiseuille et du rapport Po/Nu pour les géométries retenues

Mise en évidence du chaos dans les géométries 3D

Un système peut être qualifié de chaotique si une des trois conditions suivantes est remplie:

- sensibilité aux conditions initiales (calcul de l'exposent de Lyapunov),
- production de mécanisme cinématique d'étirement et de repliement
- production d'intersections homocline ou hétérocline .

École polytechnique de l'université de Nantes

Mélange thermique

Motivation : Quantifier l'homogénéité en température dans les canaux.

Procédure numérique employée : - résolution des équations de NS et de l'énergie

- conditions aux limites : parois adiabatiques
- deux conditions d'entrée dans le canal:

Injection horizontale

Injection verticale

École polytechnique de l'université de Nantes

Caractérisation de l'homogénéité par le **calcul du degré de mélange** dans des sections droites de l'écoulement:

$$D = 1 - \left(\frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (T_i - 310.)^2}}{D_0}\right)$$

D = 0 à l'entrée du domaine de calcul D = 1 homogénéité totale

Résultats qualitatifs du mélange thermique Injection horizontale

Comparaison du mélange pour les différentes géométries

à l'issue de chaque période pour deux nombres de Reynolds

ENTRE NATIONAL

DE LA RECHERCHE SCIENTIFIQUE

École polytechnique de l'université de Nantes

Résultats qualitatifs du mélange thermique Injection verticale

Re = 100

École polytechnique de l'université de Nantes

Re = 200

ENTRE NATIONAL

DE LA RECHERCHE SCIENTIFIQUE

Comparaison du mélange pour les différentes géométries

à l'issue de chaque période pour deux nombres de Reynolds

Conclusions et perspectives

- CONCLUSIONS :

- Des géométries de canaux 3D chaotiques présentant d'excellentes performances thermiques ainsi qu'une très bonne efficacité (compromis transfert de chaleur/ perte de charge) ont été identifiées.

- Elles permettent également d'assurer une très bonne homogénéité en température du fluide.

- TRAVAUX EN COURS :

- Caractérisation de l'efficacité avec un autre critère que Po/Nu (production d'entropie d'origine thermique et d'origine mécanique,...)

- Calcul couplé conduction-convection
- Réalisation d'un prototype expérimental d'échangeur en approche "hors pile";

- PERSPECTIVES :

- Distribution de l'hydrogène coté anode (homogénéité, pb perte de charge/consommation)
- Distribution de l'air côté cathode (évacuation de l'eau produite)

Calcul couplé conduction-convection

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE