

Approche des transferts couplés dans une PEMFC

Cécile Gondrand, <u>Joël Pauchet</u>, Pascal Schott CEA-Grenoble

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journée Laboratoire Essais et Validation

ne Journées SFT: 04-05/04/06

Sommaire

La problématique dans les PEMFC

Modélisation des transferts diphasiques dans les poreux des AMEs

Modèle 2D transitoire de couche de diffusion

Modèle 2D transitoire fluidique de couche active

Conclusion et perspectives

Problématique : la gestion de l'eau

- La membrane doit être hydratée pour transporter les protons
- Selon les conditions de fonctionnement :
 - L'entrée de pile peut s'assécher => humidifier les réactifs
 - La sortie de pile peut se noyer => évacuer l'excès d'eau

• Travailler en monophasique (travaux sur des membranes et des GDL plus tolérantes) réduit ces besoins

• La gestion de l'eau reste cependant à traiter, en particulier lors des phases transitoires, notamment de démarrage, d'arrêt.

Problématique : l'intérêt des modèles poreux

- Nombreux phénomènes couplés (électrochimique, fluidique, thermique)
- \Rightarrow la modélisation permet de
 - \Rightarrow analyser qualitativement (voire quantitativement) des résultats d'essais
 - ⇒ proposer des améliorations de composants et/ou de stratégie de fonctionnement
- Pour la gestion de l'eau, nécessité de prendre en compte les écoulements diphasiques au sein du coeur de pile, assimilé à un empilement de milieux poreux : couches active et couche de diffusion

Sommaire

La problématique dans les PEMFC

Transferts diphasiques dans les AMEs

- Modèle 2D transitoire de couche de diffusion
- Modèle 2D transitoire fluidique de couche active
- Conclusion et perspectives

CECI Transferts diphasiques dans les AMEs

Approche classique milieux poreux : lois de type Darcy généralisées, pression capillaire, saturation...

Représentation homogène moyennée dans un Volume Élémentaire Représentatif (VER) tel que : d << r0 << L

Liten Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Transferts diphasiques dans les AMEs

Conservation de la masse

$$\frac{\partial \omega}{\partial t} + \nabla (\vec{j}^{\,d} + \vec{j}^{\,c}) = S^{\,m}$$

Eau liquide :

- $\omega_1 = \varepsilon \rho_1 s$ où s est la saturation liquide du milieu
- $\vec{i}^d = 0$
- $\vec{j}_{l}^{c} = \rho_{l} \vec{u}_{l}$ (vitesse de Darçy)
- $S^{m_l} = \dot{m}_l$ (condensation)

Espèces gazeuses i (vapeur d'eau, oxygène et azote) :

• $\omega_i = \varepsilon (1-s)c_i$ (fraction massique) où ε est la porosité du milieu

• Diffusion de Fick si mélange binaire
$$\vec{j}^{d_i} = -\rho D_i \nabla(\frac{c_i}{\rho})$$
 avec $\rho = \sum c_i$

de Stefan-Maxwell sinon

$$\nabla(\omega_i) = \sum \frac{\omega_i \vec{j}^{d_j} - \omega_j \vec{j}^{d_i}}{\rho D_{ij}}$$

•
$$\vec{j}^{c}{}_{i} = c_{i}\vec{u}_{g}$$

• $S^{m_i} = -\dot{m}_i$ (pour la vapeur d'eau) $S^{m_i} = 0$ (sinon)

liten

Direction de la **R**echerche Technologique

Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Conservation de la quantité de mouvement

$$\nabla(P) = \rho \vec{g} + \nabla(\mu \nabla \vec{u}) - \frac{\mu}{k} \vec{u} - C\rho \vec{u} |\vec{u}|$$

Conservation de l'énergie

$$(\rho C_p)^* \frac{\partial T}{\partial t} + ((\rho C p \vec{u})_l + (\rho C p \vec{u})_g) \cdot \vec{\nabla} T - \nabla (\lambda^* \vec{\nabla} T) + \dot{m}_l \Delta h_{l,v} = S_{th}$$

Transport électrique

 $-\nabla(\sigma \cdot \nabla \Phi) = S_a$

avec

 σ la conductivité électrique (S/m)

 Φ le potentiel électrique local (V)

 S_a la production de courant locale (A/m³)

Transferts diphasiques dans les AMEs

• Perméabilité absolue
$$k_l = k_i k_{rl}(s)$$
 et $k_g = k_i k_{rg}(s)$

- Perméabilité intrinsèque $k_i = \frac{d^2}{A} \frac{\varepsilon^3}{(1-\varepsilon)^2}$
- Perméabilités relatives $k_l(s) = s^n$ et $k_g(s) = (1-s)^n$
- Pression capillaire

$$P_{c} = P_{g} - P_{l} = \sigma \cos \theta \sqrt{\frac{\varepsilon}{K}} J(s^{*})$$

$$J(s^{*}) = [1,417(1-s^{*}) - 2,120(1-s^{*})^{2} + 1,263(1-s^{*})^{3}]$$

$$s^{*} = \frac{s - s_{ir}}{1 - s_{irg} - s_{ir}}$$
(saturation liquide)

• Kelvin:
$$P_{H_2O,v} = P_{H_2O,v}^{sat}(T)e^{-\frac{Pc(s)M_{H_2O}}{\rho_{H_2O,r}RT}}$$

et $P_{H_2O,v}^{sat}(T) = 101325e^{13,7-\frac{5120}{T}}$

• Viscosité : $\mu'_m = \frac{\mu_m}{\varepsilon}$ ou $\mu'_m = \mu_m [1+2.5(1-\varepsilon)]$

avec
$$\mu_{m} = \sum_{i=1}^{n} \left[\frac{y_{i}\mu_{i}}{y_{i} + \sum_{i=1,(j\neq i)}^{n} y_{j}\phi_{ij}} \right]$$
$$\phi_{ij} = \left[8(1 + \frac{R_{j}}{R_{i}}) \right]^{-1/2} \left[1 + (\frac{\mu_{i}}{\mu_{j}})(\frac{R_{i}}{R_{j}})^{1/4} \right]^{2}$$
$$\bullet \quad \text{Conductivité thermique} \quad \lambda^{*} = \alpha\lambda_{//}^{*} + (1 - \alpha)\lambda_{\perp}^{*} \quad \text{ou} \quad \lambda^{*} = (\lambda_{//}^{*})^{n} (\lambda_{\perp}^{*})^{1-n}$$
$$\text{avec } \lambda_{//}^{*} = \alpha_{S}\lambda_{S} + \alpha_{L}\lambda_{L} + \alpha_{V}\lambda_{V} \text{ (parallèle)}$$
$$\lambda_{\perp}^{*} = (\alpha_{S} / \lambda_{S} + \alpha_{L} / \lambda_{L} + \alpha_{V} / \lambda_{V})^{-1} \text{ (série)}$$

liten

Direction de la Recherche Technologique

Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Sommaire

La problématique dans les PEMFC Transferts diphasiques dans les AMEs Modèle 2D transitoire de couche de diffusion Modèle 2D transitoire fluidique de couche active Conclusion et perspectives

Modèle bidimensionnel d'une GDL

- Position du problème : pourquoi un modèle, quel modèle et conditions aux frontières
- Caractérisation de la GDL
- La description des transports : matière, chaleur, électricité
- Quelques résultats de simulations, GDL en papier Toray : cas monophasique et cas diphasique
- Conclusions, perspectives : limites du modèle, travaux théoriques, validation expérimentale

GDL : Position du problème

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Les conditions aux frontières

Réponse électrochimique de la couche active

- Fonction U(I,T, P_{O2})
- $-M_{H2O,v}(I), -M_{O2}(I), M_{N2} = 0, M_{H2O,l} = 0$
- Production chaleur (I)

Pas d'échange latéral

- Densité de courant
- Flux nuls
- T dent

- Flux nuls

-
$$P_{air}$$
, X_{O2} , $X_{H20,v}$, $X_{H20,l}$ =0, X_{N2}

- T canal + échange convectif

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène

ne Journées SFT: 04-05/04/06

Caractérisation

Tissus+12%PTFE : 400 microns

Papier

100-400 microns

Laboratoire Essais et Validation

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journée

Iydrogène Journées SFT: 04-05/04/06

Caractérisation

Toray Carbon Fiber Paper "TGP-H"

Gas Diffusion Layer

Basic Data

Properties	Unit	TGP-H-030	TGP-H-060	TGP-H-090	TGP-H-120
Thickness	may.	0.11	0.19	0.28	0.37
Bulk density	g/cm ²	0.40	0.44	0.44	0.45
Porosity	35	60	78	78	78
Suiface roughness Ro	μm	8	8	ŝ	a
Gas permeability	nl-nn/len²-h-nnAq)	2500	1900	1700	1500
Electrical resistivity					
through plane	md2cm	60	80	80	80
in plane	md3cm	-	5.8	5,6	47
Thermal conductivity					
through plane train sen	xi _WZ (m.k).		[1.7]	[1.7]	(1.7)
inplone loon tasp.	WZ (m k)	1	21	21	21
inplone (100°C)	WVZ [m-k]	1	23	23	23
Coefficient of thermal exp	pansion				
in plane (25-100°C)	×10 %/℃	0.6	-0,5	0.8	-0.8
Flaxural strength	MPa	40	40	.40	-40
Flexural modulus	Gifo	8	10	10	10
Tensile strongth	N/cm	_	50	70	90

. The above data are experimental values and are not guaranteed.

Liten Direction de la Rech

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

La réponse électrochimique

• Calcul de la tension en fonction du courant

$$U = E_{rev} + \eta_{act} - R_m \cdot I$$

$$E_{rev} = \alpha_1 + \alpha_2 \cdot (T - 29815) + \alpha_3 \cdot T \cdot (0.5 \cdot \ln P_{O_2} + \ln P_{H_2})$$

$$\eta_{act} = \beta_1 + \beta_2 \cdot T + \beta_3 \cdot T \cdot \ln i + \beta_4 \cdot T \cdot \ln P_{O_2}$$

$$i = \frac{I}{1 - s} \qquad : 1'eau \text{ liquide perturbe la réaction dans la CA}$$

• Consommations et productions

$$\frac{Q}{S} = (1.2517 - U) \cdot I$$
$$N_{O_2} = -\frac{I}{4\mathcal{F}}$$
$$N_{H_2O} = \frac{I}{2\mathcal{F}}$$

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Cas monophasique

- Conditions des simulations :
 - température : 80°C
 - pression : 1.5 bar
 - humidité relative : 50%
 - densité de courant : 0.8 A/cm²

• Principaux paramètres :

l_canal l_dent ep_zd ep_dent	= 2e-3/2; = 1e-3/2; = 280e-6; = 50e-6;	% 1/2 largeur canal % 1/2 largeur dent % Epaisseur électrode (hors écrasement) % Ecrasement de l'électrode	
Rp	= 1e-6;	% Rayon des pores	
por	= 0.78;	% Porosité de la GDL non écrasée	
sigma	= 6.2e-3;	% Tension de surface	
theta	= 115;	% Angle de contact	
rho_zd_x_ne	= 5.6e-5;	% Résistivité électrique dans le plan de la GDL 1	non écrasée (ohm.m)
rho_zd_y_ne	= 80e-5;	% Résistivité électrique perpendiculaire de la G	DL non écrasée (ohm.m)
lamda_zd_x_1	ne = 23;	% Conductivité thermique dans le plan de la GDL 1	non écrasée (W/m/K)
lamda_zd_y_1	ne = 1.7;	% Conductivité thermique perpendiculaire de la G	DL non écrasée (W/m/K)
h_canal =	= 100;	% Coefficient d'échange thermique GDL/canal (W/m	2/K)
R_m	= 10e-6;	% Résistance de la membrane (ohm.m2)	
iten		La	boratoire Essais et Validation

Direction de la Recherche Technologique

i

Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Cas diphasique

• Conditions des simulations :

- température : 80°C
- pression : 1.5 bar
- humidité relative : 100%
- densité de courant : 0.8 A/cm²
- Autres paramètres identiques au cas monophasique

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Densité de courant

Au niveau de la couche active

Cas monophasique (HR 50%)

Cas diphasique (HR 100%)

\rightarrow la présence d'eau liquide accentue la différence entre le canal et la dent

liten

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Les simulations réalisées montrent que :

• la partie de l'électrode sous le canal travaille mieux que la partie sous la dent, mais la contribution de la dent n'est pas négligeable

 les gradients de température sont de l'ordre du degré (entre 0.2 et 4 ℃ en fonction des hypothèses de fonctionnement et de conductivité de la GDL)

• la collecte du courant ne semble pas être un problème (perte de potentiel de l'ordre du mV)

• l'eau liquide s'accumule de façon prioritaire sous la dent et modifie la répartition de la densité de courant

 \rightarrow outil d'aide à la compréhension et au dimensionnement.

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Mais attention aux conditions simulées :

• les conditions aux limites correspondent à un fonctionnement en entrée de cellule (air non appauvri dans le canal)

 la membrane et l'anode sont supposées homogènes (pas d'assèchement local ni de variation de la conductivité, distribution optimale de l'hydrogène)

• toute la chaleur produite par la pile est dégagée à travers la GDL de la cathode

• les conditions aux frontières côté canal peuvent être discutées (présence d'une couche limite hydraulique, continuité à l'interface...)

et aux limites du modèle :

• la loi de réponse électrochimique de la zone active n'a pas été validée pour des pressions partielles O2 très faibles (sous la dent)

 la prise en compte de l'effet de l'écrasement et le modèle parallèle pour le calcul des conductivités (notamment thermique) peuvent certainement être améliorés

• les lois de transport de l'eau liquide restent à valider (calcul de la pression capillaire, perméabilités relatives, légitimité d'un modèle homogène...)

Perspectives

Beaucoup de choses restent à faire :

• travail théorique sur les limites évoquées ci-avant : diphasique, conductivités équivalentes, lois d'interfaces

• implantation du modèle sous un code EF pour aller plus loin dans la description géométrique (écrasement non homogène, gradients de porosité)

 validation expérimentale : mesures locales de températures et de potentiel, essais de cellules avec des largeurs de canaux différentes

Lat Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Sommaire

La problématique dans les PEMFC Transferts diphasiques dans les AMEs Modèle 2D transitoire de couche de diffusion Modèle 2D transitoire fluidique de couche active Conclusion et perspectives

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Modélisation bidimensionnelle fluidique de Couche Active

- Position du problème
- Tentative de visualisation de la production volumique d'eau
- Caractérisation de la CA
- Le modèle
- Quelques résultats de simulations
- Conclusions, perspectives

Position du problème : micropile à combustible

Le cœur de pile est formé de plusieurs couches:

longitudinale de micropile

Direction de la **R**echerche Technologique Department des Technologies de l'Hydrogène

Journées SFT: 04-05/04/06

Position du problème : la gestion de l'eau

Vue de dessus de la pile en fonctionnement

Influence de l'humidité relative humidity sur la gestion de l'eau

Forte influence de l'hygrométrie ambiante

Contrôler l'assèchement/ noyage

Estimer l'influence de :

- mouillabilité, porosité, perméabilité...
- en surface ou en volume

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène

Journées SFT: 04-05/04/06

CCC Tentative de visualisation de la production volumique d'eau

Somme des maxima d'absorption dans la cellule

Essais à l'ESRF

- Résolution 1.4 microns, faisceau plan
- Hétérogénéité de distribution d'eau
- Mouvement cyclique des fissures
- Gouttes superposées => détection de la présence d'eau dans le volume avant qu'elles n'atteignent la surface?

Radiographie X de la pile en fonctionnement (ESRF)

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Caractérisation

 Microscopie électronique à transmission sur la poudre de carbone platiné

• Microscopie électronique à balayage sur la cathode

 Repérage des défauts et détermination de l'épaisseur et de la taille des différents constituants et des pores

liten

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Caractérisation

- Morphologie
 - Différentes techniques utilisées :

MEB, MET, porosimètre Hg

- Taille des pores comprise entre 10 et 100 nm
- Épaisseur de la cathode entre 10 et 50 µm

• Perméabilité

- > Sans la couche d'or : k ~ 10^{-14} m²
- > Avec la couche d'or : k ~ 4 10^{-15} m²
- Mouillabilité/angles de contact
 - Essais non concluants : difficulté sur un poreux

liten

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Es principales hypothèses du modèle Air $\int O_2 \qquad H_2O, v$ $O_2 \qquad H_2O, v$ $O_2 \qquad H_2O, v$ $O_2 \qquad H_2O, v$ $O_2 \qquad Cathode$

Membrane

- Pas d'électrochimie : sources et puits de masse uniformes
- Ecoulement transitoire, anisotherme et bidimensionnel
- Air formé d'oxygène, d'azote et de vapeur d'eau
- Convection pour l'eau liquide et la phase gazeuse
- Diffusion pour l'oxygène, la vapeur d'eau et l'azote
- Film équivalent pour les gouttes en surface

 $\frac{\text{Bilan liquide}}{\varepsilon \rho_{H_2O,l}} \frac{\partial s}{\partial t} - \nabla \left(\frac{kk_{H_2O}(s)\rho_{H_2O,l}}{\mu_{H_2O}}\vec{\nabla}P_{H_2O}\right) + \dot{m}_{\acute{e}vaporation} = \dot{m}_{H_2O}$

$$\frac{\text{Bilan gaz}}{\varepsilon(1-s)\frac{\partial\rho_g}{\partial t} - \varepsilon\rho_g}\frac{\partial s}{\partial t} - \nabla(\frac{kk_g(s)\rho_g}{\mu_g}\vec{\nabla}P_g) - \dot{m}_{\acute{e}vaporation} = -\dot{m}_{O_2}$$

$$\frac{\text{Bilan Oxygène}}{\varepsilon(1-s)\frac{\partial\rho_{O_2}}{\partial t} - \varepsilon\rho_{O_2}}\frac{\partial s}{\partial t} - \nabla(\rho_{O_2}\frac{kk_g(s)}{\mu_g}\vec{\nabla}P_g + D_{O_2/air}\vec{\nabla}\rho_{O_2} - D_{O_2/air}\frac{\rho_{O_2}}{\rho_g}\vec{\nabla}\rho_g) = -\dot{m}_{O_2}$$

$$\frac{\text{Bilan vapeur d'eau}}{\varepsilon(1-s)\frac{\partial\rho_{H_2O,v}}{\partial t} - \varepsilon\rho_{H_2O,v}} \frac{\partial s}{\partial t} - \nabla(\rho_{H_2O,v}\frac{kk_g(s)}{\mu_g}\vec{\nabla}P_g + D_{H_2O,v/air}\vec{\nabla}\rho_{H_2O,v} - D_{H_2O,v/air}\frac{\rho_{H_2O,v}}{\rho_g}\vec{\nabla}\rho_g) - \dot{m}_{\acute{e}vaporation} = 0$$

$$\frac{\text{Bilan d'énergie}}{(\rho C_p)^*} \frac{\partial T}{\partial t} - (Cp_{H_2O,l} \frac{kk_{H_2O}(s)\rho_{H_2O,l}}{\mu_{H_2O}} \vec{\nabla} P_{H_2O} + Cp_g \frac{kk_g(s)\rho_g}{\mu_g} \vec{\nabla} P_g) \cdot \vec{\nabla} T - \nabla(\lambda^* \vec{\nabla} T) + \dot{m}_{évaporation} \Delta k$$

+ les relations de fermeture

liten

Laboratoire Essais et Validation

Direction de la Recherche Technologique

Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

liten

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène

ydrogène Journées SFT: 04-05/04/06

Résultat de simulation

Liten Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

- La répartition de l'eau en surface n'est pas homogène
- La visualisation de la production d'eau liquide est très délicate à faire dans le volume mais pourtant importante
- Les transferts fluidiques dépendent fortement des conditions ambiantes et des propriétés de la couche active
- Les propriétés sont mal connues
- L'approche VER semble plus appropriée que pour les GDL

Perspectives

Beaucoup de choses restent à faire :

• prendre en compte les gouttes en surface

• visualiser la production d'eau liquide volumique pour estimer les raisons de l'hétérogénéité vue en surface

- intégrer le transport électrique
- déterminer les propriétés de transport (thermique et électrique) de la couche active
- appliquer la démarche aux couches actives des piles « classiques »
- valider les modèles

La Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Conclusions : ce qui a été fait

- 1. Caractérisation de la structure des GDL et CA
- 2. Début de caractérisation des propriétés de transport monophasique :
 - GDL : électrique, thermique, perméabilité
 - CA : perméabilité
- 3. Tentatives de visualisation de l'eau en fonctionnement sur une micropile
- 4. Mise en place de modèles 2D, transitoires, diphasiques en poreux
 - GDL : performances, répartition de densité de courant
 - CA : gestion de l'eau
- 5. Premiers enseignements issus de ces modèles
 - Performances
 - Couplage des phénomènes en jeu
 - Améliorations de composants

liten

Laboratoire Essais et Validation

Direction de la Recherche Technologique Department des Technologies de l'Hydrogène Journées SFT: 04-05/04/06

Perspectives

Possibilité d'intégrer de nombreux phénomènes mais :

- Nécessité de mieux connaître les milieux considérés : localement (structure, répartition des constituants...) et globalement (géométrie, défauts, lois de transport...)
- 2. Nécessité de valider les modèles : visualisation de l'eau, mesures locales
- 3. Améliorer certains niveaux de description : GDL en particulier

