

R. Vaillon, J-M. Geffrin, C. Eyraud, O. Merchiers P. Sabouroux, B. Lacroix

Centrale Mar



# **Context and objectives**

### Analysis of light scattering by non-spherical micro-sized particles

- interplanetary & interstellar dust
- biological cells,...
- ice crystals and aerosols
- aggregates from incomplete combustion



requires accurate numerical solution of Maxwell equations.

Maxwell equation numerical solvers have to be validated

#### in primary variables

(amplitude and phase of the electric field)

against experimental data.

especially for non-spherical monomers or non-spherical particles

? How to build (sub)-micron-sized (complex shape) particles?? How to achieve precise control of position and orientation?

It is not very easy to measure the phase of light waves.

# **Solution: microwave analogy**

### **Principles**

[Greenberg & al., 1961; Gustafson, 1996;...]



# Microwave analog to light scattering measurements: a brief history

 Principles, bibliography, state-of-the art, measurements by Bo A.S. Gustafson in Chap. 13 of

#### [Mishchenko, Hovenier & Travis, Academic Press, 2000]

- The facility at the University of Florida: main features
  - spectral range :
  - 2D measurements
  - Iot of measurement data (mainly intensities)
  - publications and data (1996-1999-2005)

#### ex: [Xu & Gustafson, JQSRT, 2001]

[75 - 110] GHz ; [2.7 - 4] mm

for aggregates

#### Still improvements might be envisaged:

- wavelength range (then increase of targets' size)
- choice of incident and observation angles ("3D measurements")
- measurements of <u>the full amplitude</u> <u>scattering matrix (amplitude and phase)</u> for nonspherical particles







### **Anechoic chamber:**

#### 14.2 m x 6.5 m x 6.5 m



Network Analyzer (HP 8510) High gain horn antennas (18-26 GHz)



# The experimental set-up

#### Main features

 3D measurements: emitter can be moved along the vertical arch whereas receiver displacement lies in the azimuthal plane



- Broadband measurements
  [2 20] GHz ; [15 150] mm
- Analysis of all polarization cases (full AS matrix)
- Drift compensation
  [Eyraud et al., APL 89, 2006]
- Noise characterization and reduction to allow cross-polarization measurements
- Investigation of target's orientation (rotation of the vertical axis [mast])

# Investigation of a 'soot-like' fractal aggregate

# **Target definition and building**





TEM picture from

[Xu et al., Combustion and Flame, 2003]

Morphology is satisfactorily represented by a mass fractal law



# Investigation of a 'soot-like' fractal aggregate

### **Target definition and building**

Computational generation of an aggregate with pre-specified fractal parameters

the complex aggregate is generated by a "growing" algorithm

the algorithm allows only combinations which satisfy the fractal law

chosen parameter values:



$$N = 74$$
  
 $k_0 = 2$   
 $D_f = 1.7$ 



# 🖊 🚘 Investigation of a 'soot-like' fractal aggregate

# **Target definition and building**

Building of the analog aggregate using a micro-machining apparatus





- the sphere (diam = 5 mm) is maintained
- using an aspiration system

# 🔎 🚘 Investigation of a 'soot-like' fractal aggregate

### **Target definition and building**

Building of the analog aggregate using a micro-machining apparatus

**Removable metallic** ~6 cm holders **Secondary metallic** holders **Polystyrene holder** 

# Investigation of a 'soot-like' fractal aggregate

# **Target definition and building**





Determination of the dielectric properties (complex permittivity)

of the aggregate material (polyacetal) using the "*Epsimu*" laboratory facility

[Sabouroux & Boschi, Rev. Electr. Electron. 10, 2005]

n = 1.668 + *i* 0 on [15-20] GHz

### Methodology

### Calibration

reference target: metallic sphere



- normalization of measurements for an excitation of amplitude 1 and phase 0 at the center of the sphere
- a normalization coefficient is obtained for each frequency
- for other targets, multiplication of the light scattering code data with this coefficient allows performing a proper comparison with experimental data

Conventions for polarization components (out of plane configuration)







### **Other results**

[Merchiers et al., Opt. Express 18, 2010]

Measurements for different orientations of the aggregate



- Comparisons for several methods and codes
  - **T-Matrix**
  - **T-Matrix**
  - DDA (ddscat 7.0)
  - ► MoM

- [Mackowski & Mishchenko, JOSA A, 1996]
- [Stout et al., JOSA A, 2008]
- [Draine & Flatau, JOSA A, 1994]
- [Eyraud et al., Inverse Problems, 2009]

# 🔎 🚘 Investigation of a 'soot-like' fractal aggregate

### Targets built by stereo-photolithography

simple aggregates with 2 to 4 spherules (diam = 2.5 cm)

0% or 20% interpenetration







### Investigation of two merging spheres

#### The "big" sphere case





### Investigation of the effect of merged spheres in aggregates





# Microwave imaging and inversion...

#### **Quantitative reconstructions of a single aggregate**

Measurements made with:

- 11 sources
- 53 receivers

+

- 9 orientations of the aggregate

A conjugate gradient minimization algorithm

The <u>knowledge of the real noise</u> in the measured fields

Image of the permittivity inside the test domain using the different polarization cases







[Eyraud et al., IEEE TAP 59, 2011]

21

# Concluding remarks

A novel implementation of a microwave analog to light scattering measurement setup

- Iarge wavelengths [1.5-15 cm] => larger targets: easier building and better control
- partial 3D scattering patterns
- Full ASM: amplitude and phase
- ► to assess approximate Maxwell equation solvers in primary variables

Experimental database: freely accessible at

http://www.fresnel.fr/3Ddirect/database.php

# Concluding remarks

### Ongoing and future works

- investigation of more realistic aggregates
  - interpenetration
  - 'sintered' aggregates
  - non spherical monomers?
- search for an absorbing material in the microwave range with
  - $\epsilon \sim 3 + i 3$  to investigate effects of moderate absorption
  - various attempts with polymers charged with carbon particles (CTTM)

#### <u>full 3D</u> measurements by adding a rotation axis

total quantities and orientation averaging



- trees, scale reduction UHF-VHF => microwaves (collab. L2E Jussieu)
- cylinders (collab. The aerospace corporation, USA)
- holography (collab. U. Mississippi USA)
- scattering properties of high-refractive-index (n~3.5-4) particles (collab. U. Santander Spain)

# Acknowledgements Some papers, contact persons



Acknowledgements: Agence Nationale de la Recherche (project SOOT # ANR-06-BLAN-0349-03) B. Draine & P. Flatau (DDSCAT)

D. Mackowski & M. Mishchenko, B. Stout (T-Matrix codes)

Some papers:

[Eyraud et al., APL, 2006] [Sabouroux et al., JQSRT, 2007] [Merchiers et al., APL, 2009] [Merchiers et al., Optics Express, 2010] [Vaillon et al., JQSRT, 2011]

contact persons:

Jean-Michel.Geffrin@fresnel.fr

rodolphe.vaillon@insa-lyon.fr

