1D selective emitters optimization for TPV applications

E. NEFZAOUI, J. DREVILLON and K. JOULAIN

Institut P' Universite de Poitiers - France

August 29th, 2011

- The Purpose
- The Challenge
- 2 Solutions?
 - Some ideas
 Selective emitters : A quick review
- 3 The problem
- 4 Method

- First results
- A new problem
- Improvements

6 Conclusion

The purpose?

- Control thermal radiation
- Adapt it to energy converters to increase efficiency

Main loss mechanisms

Losses du to transmission (A) and incident photons excess of energy (B) (Jean-Claude MULLER, Techniques de l'ingenieur, 2007)

Possible solutions

<u>Some spectrally coherent thermal sources 1/2</u>

A PC with a dielectric material

Some spectrally coherent thermal sources 2/2

Fabry-perot like cavity

Problem to solve

Target Emissivity

Target reflectivity

- Energy conservation : $\rho+\alpha+\tau=1$
- No transmission : $\tau = 0$
- Kirchhoff's law : $\alpha(\lambda, \theta) = \epsilon(\lambda, \theta)$

$$\implies \rho_{target} = 1 - \epsilon_{target}$$

Quantity to minimize

$$U = \sum_{p} \int_{\theta_{1}}^{\theta_{2}} \int_{\lambda_{min}}^{\lambda_{max}} \left[\epsilon_{target}(\lambda, \theta) - \epsilon_{struc}^{p}(\lambda, \theta) \right]^{2} d\theta d\lambda$$

+
$$\sum_{p} \int_{\theta_{1}}^{\theta_{2}} \int_{\lambda_{min}}^{\lambda_{max}} \left[r_{target}(\lambda, \theta) - r_{struc}^{p}(\lambda, \theta) \right]^{2} d\theta d\lambda$$
(1)

- Matrix Transfer Method
- Parameters : M, d_i, ϵ_i $(i \in [1..M])$

11 24

Introduction Solutions? The problem Method Results Conclu

Particle Swarm Optimization 1/2

Particle swarm optimization 2/2

Position and Velocity update

$$X_{i+1} = X_i + V_i$$

$$V_{i+1} = w_1 \cdot V_i + w_2 \cdot r_1 \cdot (X_{nb,i} - X_i) + w_3 \cdot r_2 \cdot (X_{pb,i} - X_i)$$

A Bilayer structure

(Drevillon et al., JAP, 109(2011))

The structure features

- 735nm Ge layer + 65nm SiC layer
- Satisfying coherence properties (a peak around λ = 12.6μm)
- Simplest structures up to now

Physical phenomena

- Ge layer(transparent) : Anti reflection coating at \u03c6 peak
- SiC layer(lossy) : High absorber/emitter at \u03c6 peak

Bilayer structure : physical phenomena

A four-layer structure

Emissivity (TM polarization) Si(50nm)-Ag(30nm)-Si(300nm)-Ag(200nm)

Hemispherical emittance

$$\lambda_{P}\simeq 2.3\mu{
m m}$$
 and FWHM $\simeq 0.1\mu{
m m}$

Efficiency Vs Power

High powers?

 \Rightarrow Emission peak (width) control

Tuning bilayers

The emission peak tightly depends on $\epsilon_{\textit{lossy}}$ resonance

Radiative properties

Hemispherical Emittance

- $\lambda_{peak} \simeq 9.23 \mu m \simeq \lambda_{\epsilon}$ resonance
- FWHM \simeq 0.9 μ m

Tuning 4-layer structures

E ^{out} E ⁱⁿ	n°	$\lambda_p(\mu m)$	fwhm(μ m)	$\eta(-)$	$P(mW.cm^{-2})$
Gold/	1	1.4	0.14		
Doped Si 1 Si 2	2	1.76	0.15		
₃ Cavity	3	2.1	0.14		
	4	1.8	0.1		
Substrate	5	1.8	0.18		
	6	1.8	0.36		
* p-type doped Si $< 5.10^{20}$					

. cm⁻³

Table: Radiative properties and performances

materials	n°	$d_1(nm)$	<i>d</i> ₂ (nm)	$d_3(nm)$	$d_4(nm)$	$c_1(\text{atom/cm}^3)$
Si/Gold	1	87	36	150	390	_
	2	87	36	200	390	_
	3	87	36	250	390	_
Si / Doped Si	4	375	48	194	30	3.72
	5	375	48	194	30	2.72
	6	375	48	194	30	1.72

An overview

Achieved Goals

- Design of simple quasi-coherent thermal sources at mid IR and tunable thermal sources at near IR
- Theoretical increase of TPV systems efficiency

In process

- Structures' samples fabrication
- Emissivity measurement experiments

Future developments

- Selective emitters behaviour at high temperature?
- TPV systems performance measurement

Introduction Solutions? The problem Method Results Conclu

Any questions?

Thank you for your attention ?