

A New Look at the Modeling of Secondary Breakup

Nicolas Rimbert ^{*1,2}, Sébastian Castrillon-Escobar^{1,2,3}, Renaud Meignen³, Michel Gradeck^{1,2} ¹LEMTA, Université de Lorraine, Nancy France ²CNRS, UMR 7563, Nancy, France ³IRSN, Service des accidents graves, Cadarache, France *Corresponding author: nicolas.rimbert@univ-lorraine.fr

Experimental studies

- Since Eotvos
 - Drop tower
 - Hochwelder (1919)
 - Shock tube
 - Ranger & Nicholls (1968)
 - Faeth's group in Michigan (90^{ies})

– Wind Tunnel

- Nowadays...
 - (Opfer et al. 2014, Kulkarni & Sojka 2014...etc.)
 - » Easier...
- And many more...

First Classification (Pilch and Erdman, 1987)

- 1. Deformation We < 12
- 2. bag break-up: 12 < We < 50
- *3. umbrella break-up* for 50 < *We* < 100
- 4. Multimode breakup
- Shear break-up for 100 < We
 < 350)
- 6. Wavy Shear Breakup: 350 < *We*
- 7. Piercing break-up
- 8. Catastrophic break-up

Second Classification (Faeth's Group)

Regime map for shock wave disturbance Univ. Ann Arbor

Hsiang and Faeth Drop Deformation and breakup due to shock wave and steady disturbance IJMF, 21, 545-560, 1995

Droplet Deformation Models

- Droplet deformation and breakup model
 - Oscillator-like Model
 - TAB Taylor Analogy Breakup (*O'Rourke 1987*)
 - DDB Droplet Deformation and Breakup (Ibrahim et al. 1993)
 - More recent
 - Elongational deformation (*Villermaux & Bossa 2009, Kulkarni & Sojka 2014*)
 - Potential flow around a disc (Opfer et al. 2014)
- A new model
 - Without fitting parameters... Is it possible?

Bag-Breakup, Qualititavely

- In the literature 12(23) < We < 50
- Six stages
 - Inception
 - Deformation
 - RT Wave Growth
 - Bag Growth
 - Bag breakup
 - Rim Breakup

Quantitatively

- Balance between:
 - Kinetic (deformation) energy: K
 - Surface energy: E_s
 - Viscous Dissipation: D
 - Air Pressure Work: W_p

$$\frac{dK}{dt} + \frac{dE_s}{dt} = W_P + D$$

- Simple modelling
 - Imposes a 1-parameter deformation path

Hypotheses

- Chosen deformation path: Oblate Ellipsoid
 - Greater semi-axis: a
 - Lesser semi-axis: b

- Other hypotheses
 - Axisymetric potential outside flow
 - Viscous extensional flow inside
 - Volume conservation $a^2b = R_0^3$

Flow inside the spheroid

• Viscous Extensional Flow

Flow outside the spheroid

- Axisymmetric potential flow
 - Batchelor An introduction to fluid dynamics

- Conformal transformation

$$z + ir = \sqrt{a^2 - b^2} \operatorname{Sinh}(\xi + i\eta)$$

Not that bad approximation

• Gerris Simulation (Azzara, 2014)

Kinetic Energy Term

• Can be computed

$$K = \frac{1}{2} \rho_L \iiint_{V(t)} \mathbf{V}^2 d^3 x = \frac{1}{2} \rho_L \left(\frac{\dot{y}}{y}\right)^2 \iiint_{Ellipse(yR_0,R_0/y^2)} \left(r^2 + 2z^2\right) 2\pi r dr dz$$

- Thanks to Mathematica!
- And given the shape

$$K = \frac{1}{2} \rho_L K_C \left(y\right) \left(\frac{\dot{y}}{y}\right)^2$$

- Where
Deformation y
1 2 3 4 5 6 7

• $K_c(y) \approx 22.1797 - 36.5808y + 25.9328y^2 - 8.2371y^3 + 1.5115y^4 - 0.1425y^5 + 0.0054y^6$

Surface Energy Term

• Exact formula (oblate)

$$S = 2\pi a^{2} + \pi \frac{b^{2}}{e} \operatorname{Log}\left(\frac{1+e}{1-e}\right) \qquad e = \sqrt{1 - \frac{a^{2}}{b^{2}}}$$

• One gets

$$\frac{dE_s}{dt} = \sigma \frac{dE_s}{dy} \frac{dy}{dt} = \sigma K_s(y) \frac{1}{y} \frac{dy}{dt}$$

• Where K_S can be approximated by $K_s(y) \approx -39.682 + 41.523 \ y - 5.242 \ y^2 + 3.818 \ y^3 - 0.404 \ y^4 + 0.017 \ y^5$

Viscous Dissipation Term

Cylindrical coordinates

$$D = \mu_L \int_V 2 \left[\left(\frac{\partial V_r}{\partial r} \right)^2 + \left(\frac{\partial V_\theta}{r \partial \theta} + \frac{V_r}{r} \right)^2 + \left(\frac{\partial V_z}{\partial z} \right)^2 \right] + \left[\left(r \frac{\partial V_\theta}{\partial r} \right) + \frac{\partial V_r}{r \partial \theta} \right]^2 + \left[\frac{\partial V_z}{r \partial \theta} + \frac{\partial V_\theta}{\partial z} \right]^2 + \left[\frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r} \right]^2 d^3x$$

• Can be computed exactly

$$D = \mu_L \iiint_{S(y)} 12 \left(\frac{\dot{y}}{y}\right)^2 d^3 x = 16\pi R_0^3 \mu_L \left(\frac{\dot{y}}{y}\right)^2$$

- Schmehl et al. (ILASS 2002)

Air Pressure Work

- Air pressure work is given by $W_P = - \bigoplus P(\mathbf{V}.\mathbf{n}) dS = 2 \int_0^a \frac{1}{2} \mathbf{U}^2 (\mathbf{V}.\mathbf{n}) 2\pi r dr$
- Which can be given by

$$W_P = \rho_G U_\infty^2 R_0^2 K_P(y) \frac{dy}{dt}$$

• Where

 $K_P(y) \approx -0.599 + 0.535y - 0.178y^2 + 4.026y^3 - 0.00137y^4$

Final Equation

• Using non dimensional numbers:

• One gets:

$$\frac{d}{dt^*} \left(\left(\frac{\dot{y}}{y}\right)^2 K_C(y) \right) + \frac{128\pi}{Re} \left(\frac{\dot{y}}{y}\right)^2 + \frac{16}{We_G} K_S(y) \left(\frac{\dot{y}}{y}\right) = 8K_P(y) \left(\frac{\dot{y}}{y}\right)$$

Steady State

• Equating Air Pressure and Surface Tension

Unsteady behavior

• Linearisation $\varepsilon = y - 1$

Decelerating (wind tunnel) drop

Non dimensionalisation

$$- U_{0} \text{ initial velocity } U^{*} = \frac{U}{U_{0}}$$
• Momentum equation
$$\frac{dU^{*}}{dt^{*}} = -\frac{3}{2\sqrt{K}}C_{d}y^{*2}U^{*2}$$

$$C_{d}(y,Re) = \frac{24}{Re}(1+0.1935Re^{.6305}) \operatorname{Min}\left[\frac{3 y^{3}+4}{7}, 4\right]$$

• Deformation equation U = 14 m/s We = 11.3, Oh=0.006, K= 769

$$2\frac{d}{dt^*}\left(\left(\frac{\dot{y}}{y}\right)^2 K_C(y)\right) + \frac{128\pi}{Re} \frac{1}{U^*} \left(\frac{\dot{y}}{y}\right)^2 + \frac{16}{We_G} K_S(y) \frac{1}{U^{*2}} \left(\frac{\dot{y}}{y}\right) = \frac{8}{2} K_P(y) \left(\frac{\dot{y}}{y}\right)$$

Vortices inside

Modélisation de l'atomisation secondaire **Vortices outside** Journée SFT Spray & gouttes 2014

Why Fitting parameters?

« Model »

« Reality »

Flock et al. (2012)

Accelerating (freefall) drop

 Non dimensionalisation Liquid metal/liquid $Eo = \frac{\left(\rho_L - \rho_G\right)g\left(2R_0\right)}{\left(2R_0\right)}$ **Added Mass** Deformation *y*¹⁸ $U_l = \sqrt{\frac{4(K-1)R_0}{3gC_d}}$ Momentum equation $\frac{dU^*}{dt^*} = -\frac{3}{2\sqrt{K}}C_d y^{*2}U^{*2} + \frac{K^{3/2}}{K-1}\frac{Eo}{We_G}$ 0.5 1.0 U₁=1.05 m/s, We = 26.88, Oh=0.00014, - Added mass effect $K = 8, R_0 = 6mm$ $\left(1+y^{3}\frac{1}{K}\frac{e-(\sin^{-1}e)\sqrt{1-e^{2}}}{\sin^{-1}e-e\sqrt{1-e^{2}}}\right)\frac{dU^{*}}{dt^{*}}=-\frac{3}{2\sqrt{K}}C_{d}y^{*2}U^{*2}+\frac{K^{3/2}}{K-1}\frac{Eo}{We_{G}}$

Time t^*

1.5

WHAT HAPPENS WHEN SIZE DOUBLE?

Rayleigh-Taylor Growth

• Most amplified wavelength is given by

$$\lambda_{RT,\max} = 2\pi \sqrt{\frac{3\gamma}{f\Delta\rho}}$$

• Droplet deceleration is given by

$$f = \frac{3}{8} \frac{\rho_G}{\rho_L} \frac{x^2}{r^3} C_d U^2$$

• Which turns to

$$\frac{\lambda_{RT,\max}}{r} = 2\pi \left(\frac{r}{x}\right) \sqrt{\frac{8\gamma}{C_d \rho_G U^2 r}}$$

- C_d is equal to (Pilch et Erdman, 1987)
 - 1.7 (falling droplet)
 - 3.0 (shock tube)

x

 $2\lambda_{RT}$

 $3\lambda_{R7}$

Critical Weber Number

 By assuming the following two-waves breakup condition: x=λ=2r, one gets:

$$\left(\frac{x}{r}\right)^4 = 2^4 = 16 = 64\pi^2 \frac{1}{C_d We}$$

- Which turns to
 - Free Fall
 - Shock tube
- With three waves
 - Umbrella breakup $2x = 3\lambda_{RT}$

$$We_{\min} = \frac{4\pi^2}{C_d} \approx 23.2$$
$$We_{\min} = \frac{4\pi^2}{C_d} \approx 13$$

$$\left(\frac{x}{r}\right)^4 = 12^2 \pi^2 \frac{1}{C_d We}$$
 $We_{\min} = \frac{144\pi^2}{16C_d} = 52$ (chute libre)

Theoretical Diagram

DAUGHTER DROPS PDF

Bag Breakup Dispositif Experimental

N. Rimbert and G. Castanet *Evidences of turbulent cascading atomization in the bag-breakup regime* Phys. Rev. E (2011)

- Tuyère Lechler ref. 665-042, 8 bars
 - Montée verticalement

- Oeil de chat, "Fan spray", 80 L/minute
- La lumière Laser est guidée optiquement dans une fibre
- PDPA: mesure la taille et la vitesse des gouttes

PDF à trois pics

Log Lévy Stable PDF

- Novikov and Dommermuth, Phys. Rev. E, 1997
- *Rimbert and Séro-Guillaume, Phys. Rev. E, 2004*
 - Extension de résultats de Kolmogorov
 - Distribution volumique
 - Données exp.
 communiquées par
 Simmons and Hanratty
- Ici, nos propres données
 - 50,000 gouttelettes
 - Distribution numérique
 - $\alpha = 1.69$

$\sigma_{\ln d} \approx 1.1$

31

Other representation of Log-Lévy PDF

