

Traitement des conditions aux limites de spécularité pour la résolution de l'ETR 3D en éléments finis

D. Le Hardy, Y. Favennec, A. Badri, B. Rousseau

27 novembre 2015

Plan

- Objectifs
- Modèle mathématique
- 3 Construction du modèle numérique
- Walidation

Caractérisation radiative infrarouge de matériaux semi-transparents

Méthodes pour la caractérisation radiative :

- Théorie de Mie (1D), (Dombrovsky, Milandri,...)
- Méthodes à N flux (1D), (Dombrovsky, Randrianalisoa, Baillis,...)
- Méthodes Numériques (1D), (Pilon, Moura, ...)

Caractérisation radiative infrarouge de matériaux semi-transparents

Méthodes pour la caractérisation radiative :

- Théorie de Mie (1D), (Dombrovsky, Milandri,...)
- Méthodes à N flux (1D), (Dombrovsky, Randrianalisoa, Baillis,...)
- Méthodes Numériques (1D), (Pilon Moura...)

Caractérisation radiative infrarouge de matériaux semi-transparents

Méthodes pour la caractérisation radiative :

- Théorie de Mie (1D), (Dombrovsky, Milandri,...)
- Méthodes à N flux (1D), (Dombrovsky, Randrianalisoa, Baillis,...)

– Méthodes Numériques (1D), (Pilon Moura

Problème inverse

Problème inverse

Plan

- Objectifs
- 2 Modèle mathématique
- Construction du modèle numérique
- 4 Validation

Équation du transfert radiatif

$$\underbrace{s \cdot \nabla L(x,s)}_{\text{Pertes par absorption}} + \underbrace{\underbrace{(\kappa + \sigma_s) L(x,s)}_{\text{fransport}} = \underbrace{\int_{4\pi} \Phi(s' \to s) L(x,s') \; \mathrm{d}s'}_{\text{Gain par diffusion}} + \underbrace{\kappa L_b(T)}_{\text{Emission}}$$

Conditions aux limites

$$L(\boldsymbol{x},s) \ = \underbrace{\tilde{L}(\boldsymbol{x},s)}_{\text{Luminance}} + \underbrace{\frac{\rho(s\cdot n)L(\boldsymbol{x},\zeta(s))}{\pi}}_{\text{Edistinance}} + \underbrace{\frac{1-\varepsilon}{\pi}\int_{s'\cdot n>0}L(\boldsymbol{x},s')s'\cdot n\;\mathrm{d}s'}_{\text{Réflexion}}$$
 Euminance Réflexion Réflexion entrante spéculaire diffuse

Réflectivité spéculaire

$$\rho(\boldsymbol{s} \cdot \boldsymbol{n}) = \begin{cases} 1 \text{ si } \theta_i \in]\theta_{cr}, \frac{\pi}{2}[\\ \frac{1}{2} \left[\left(\frac{\sin(\theta_i - \theta_r)}{\sin(\theta_i + \theta_r)} \right)^2 + \left(\frac{\tan(\theta_i - \theta_r)}{\tan(\theta_i + \theta_r)} \right)^2 \right] \text{ si } \theta_i \in]0, \theta_{cr}[\\ \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \text{ si } \theta_i = 0 \end{cases}$$

avec
$$n_1 \sin \theta_i = n_2 \sin \theta_r$$
 et $\theta_{cr} = \arcsin(n_2/n_1)$

Plan

- Objectifs
- 2 Modèle mathématique
- 3 Construction du modèle numérique
- 4 Validation

Quadratures usuelles

 S_{12} [Lee - 1962]

 T_6 [Thurgood - 1995]

Nouvelle quadrature $SqT_{n,p}$

 $SqT_{8,2}$

Méthode des ordonnées discrètes

Discrétisations angulaires 3D

$$(\mathsf{SDS}_m): (s_m \cdot \nabla + \beta) L(\boldsymbol{x}, \boldsymbol{s}_m) - \sigma_s \sum_{j=1}^{N_d} \omega_j L(\boldsymbol{x}, \boldsymbol{s}_j) \Phi_{m,j} = \kappa L_b(T)$$

avec $\omega_m = \text{mes } \Omega_m$

Différents cas de réflexion spéculaire

Toutes les directions de l'angle solide Ω_i sont réfléchies

Seule une partie des directions de Ω_i est réfléchie

Réflexion spéculaire dans la littérature

Interpolation linéaire [TTSP - Gao - 2012]

Intersection d'angles solides

Distribution exactement proportionnelle de l'angle solide

Conditions aux limites discrètes

Formulation continue

$$L(\boldsymbol{x}, \boldsymbol{s}) = \tilde{L}(\boldsymbol{x}, \boldsymbol{s}) + \rho(\boldsymbol{s} \cdot \boldsymbol{n}) L(\boldsymbol{x}, \zeta(\boldsymbol{s}))$$

pour $\boldsymbol{s} \cdot \boldsymbol{n} < 0$

Formulation discrète

$$L_m(\boldsymbol{x}) = \tilde{L}_m + \delta_{m,m}(\boldsymbol{n})L_m + \sum_{j \neq m} \delta_{m,j}(\boldsymbol{n})L_j$$

pour $\boldsymbol{s}_m \cdot \boldsymbol{n} < 0$

Calcul des coefficients $\delta_{m,j}(\boldsymbol{n})$

$$\delta_{m,j}(m{n}) =
ho(m{s}_m \cdot m{n}) rac{S_{m,j}}{\Omega_m} \;\; , \;\; \delta_{m,m}(m{n}) =
ho(m{s}_m \cdot m{n}) \left[1 - \sum_{j
eq m} \delta_{m,j}(m{n})
ight]$$

Formulation faible de (SDS_m) par la méthode SUP-G

$$\int_{\mathcal{D}} (\mathbf{s}_{m} \cdot \nabla L_{m}) (\mathbf{s}_{m} \cdot \nabla v) \, d\mathbf{x} - \int_{\mathcal{D}} \tilde{\beta}_{m} (\mathbf{s}_{m} \cdot \nabla L_{m}) v \, d\mathbf{x}$$

$$+ \int_{\partial \mathcal{D}^{m+}} \tilde{\beta}_{m} L_{m} v(\mathbf{s}_{m} \cdot \mathbf{n}) \, d\Gamma + \int_{\partial \mathcal{D}^{m-}} \tilde{\beta}_{m} \delta_{m,m}(\mathbf{n}) L_{m} v(\mathbf{s}_{m} \cdot \mathbf{n}) \, d\Gamma$$

$$- \sum_{j \neq m} \left[\omega_{j} \Phi_{m,j} \int_{\mathcal{D}} \sigma_{s} L_{j}(\mathbf{s}_{m} \cdot \nabla v) \, d\mathbf{x} + \int_{\partial \mathcal{D}^{m-}} \tilde{\beta}_{m} \delta_{m,j}(\mathbf{n}) L_{j} v(\mathbf{s}_{m} \cdot \mathbf{n}) \, d\Gamma \right]$$

$$= - \int_{\partial \mathcal{D}^{m-}} \tilde{\beta}_{m} \tilde{L}_{m} v(\mathbf{s}_{m} \cdot \mathbf{n}) \, d\Gamma + \int_{\mathcal{D}} \kappa L_{b}(\mathbf{s}_{m} \cdot \nabla v) \, d\mathbf{x}$$

Plan

- Objectifs
- 2 Modèle mathématique
- Construction du modèle numérique
- Walidation

De la 2D à la 3D

Comparaison analytique

$$\begin{cases} L(\boldsymbol{x}) = \arctan(\pi x)\cos(2\pi x) + 3\\ \kappa L_b = \boldsymbol{s} \cdot \nabla L(\boldsymbol{x}) + \kappa L(\boldsymbol{x}) \end{cases}$$
$$G(\boldsymbol{x}) = \int_{4\pi} L(\boldsymbol{x}, \boldsymbol{s}) \ d\Omega(\boldsymbol{s}) = 4\pi L(\boldsymbol{x})$$
$$\kappa = 0.5 \text{cm}^{-1}, \quad \sigma_s = 1 \text{cm}^{-1}, \quad g = 0.8$$

Comparaison analytique

$$\begin{cases} L(\boldsymbol{x}) = \arctan(\pi x)\cos(2\pi x) + 3\\ \kappa L_b = \boldsymbol{s} \cdot \nabla L(\boldsymbol{x}) + \kappa L(\boldsymbol{x}) \end{cases}$$
$$G(\boldsymbol{x}) = \int_{4\pi} L(\boldsymbol{x}, \boldsymbol{s}) \, d\Omega(\boldsymbol{s}) = 4\pi L(\boldsymbol{x})$$
$$\kappa = 0.5 \text{cm}^{-1}, \quad \sigma_s = 1 \text{cm}^{-1}, \quad g = 0.8$$

Comparaison analytique

$$\begin{cases} L(\boldsymbol{x}) = \arctan(\pi x)\cos(2\pi x) + 3\\ \kappa L_b = \boldsymbol{s} \cdot \nabla L(\boldsymbol{x}) + \kappa L(\boldsymbol{x}) \end{cases}$$
$$G(\boldsymbol{x}) = \int_{4\pi} L(\boldsymbol{x}, \boldsymbol{s}) \, d\Omega(\boldsymbol{s}) = 4\pi L(\boldsymbol{x})$$
$$\kappa = 0.5 \text{cm}^{-1}, \quad \sigma_s = 1 \text{cm}^{-1}, \quad g = 0.8$$

Comparaison sur des grandeurs physiques

avec la méthode Monte-Carlo

Transmittance normale-hémisphérique FEM

$$T_{nh} = \frac{\sum_{\boldsymbol{s}_m \cdot \boldsymbol{n}_k > 0} \int_{\partial \Gamma_c} (1 - \rho_{21}(\boldsymbol{s}_m)) \omega_m L_m(\boldsymbol{s}_m \cdot \boldsymbol{n}_k)}{\int_{\partial \Gamma_{in}} \frac{1}{1 - \rho_{12}(\boldsymbol{s}_{in})} \omega_{in} \tilde{L}_{in} |\boldsymbol{s}_{in} \cdot \boldsymbol{n}_{in}|}$$

Transmittance normale-hémisphérique Monte-Carlo

$$T_{nh} = \frac{\mbox{Nombre de photons captur\'e}}{\mbox{Nombre de photons total}}$$

Source carrée avec une direction de $\frac{\pi}{4}$

- $\kappa = 0.1 {\rm cm}^{-1}$
- $\sigma_s = 0.5 {\rm cm}^{-1}$
- g = 0
- $n_2 = 1.4$

 \bullet 1000000 photons

T_{nh}/R_{nh}	FEM	$E_{MC}(X)$	$\sigma_{MC}(X)$
Reflectance	1.34×10^{-1}	1.33×10^{-1}	6.66×10^{-4}
Transmittance	1.12×10^{-1}	1.08×10^{-1}	6.10×10^{-4}
Transmittance Latérale1	7.64×10^{-2}	7.55×10^{-2}	5.18×10^{-4}
Transmittance Latérale2	7.64×10^{-2}	7.50×10^{-2}	5.16×10^{-4}
Transmittance Latérale3	3.47×10^{-1}	3.26×10^{-1}	9.19×10^{-4}
Transmittance Latérale4	7.29×10^{-2}	6.97×10^{-2}	4.99×10^{-4}

Conclusion

 Résolution de l'ETR 3D avec conditions spéculaires aux parois par la méthode d'ordonnées discrètes combinée avec une méthode éléments finis

• 3 quadratures angulaires dont une prometteuse pour l'inversion

• **Perspectives**: travailler sur les conditions de réflexion mixte [image: thèse 2008 Mathilde LORETZ]

