Approximation de Schiff appliquée au calcul des propriétés radiatives de micro-organismes photosynthétiques et résolution par la méthode de Monte Carlo

- ¹ RAPSODEE, UMR CNRS 5302 Mines Albi Albi
- ² Institut Pascal, UMR CNRS 6602 Clermont-Ferrand
- ³ PROMES, UPR CNRS 8521 Odeillo
- 4 LAPLACE, UMR CNRS 5213 Toulouse

Institut Fresnel, UMR CNRS 7249 - Marseille

9ème Journées d'Etudes en Rayonnement Thermique, ISAE-ENSMA, Poitiers

26 - 27 Novembre 2015

Julien CHARON

JERT 2015 - Poitiers

Obtention des propriétés radiatives : une difficulté

- Obtention des propriétés radiatives de particules non sphériques et de paramètre de taille intermédiaire est une difficulté récurrente
- Divers domaines sont concernés : océanographie, astrophysique, biomédical, atmosphérique, ingénierie de la photosynthèse

 Nécessité de résoudre les équations de Maxwell et plus particulièrement le problème de diffusion d'une onde par une particule

(日)

Vers une résolution des équations de Maxwell

Méthodes de résolution rigoureuse

- En pratique, implémentation numérique limitées pour traiter des particules de grande taille et de géométrie complexe parfois très allongée
- Forte activité de recherche pour améliorer ces méthodes rigoureuses
- Nécessité d'utiliser des modèles approchés de l'interaction onde-particule

< □ > < □ > < □ > < □ > < □ > < □ >

Vers une résolution des équations de Maxwell

Approximations du modèle électromagnétique d'interaction onde-particule

 Approximation DA et/ou Schiff présente un intérêt pour toutes les communautés traitant de "particules ténues" (*soft particles*) (astrophysique, atmosphérique,...) et en particulier celle des photobioréacteurs

イロト 不得 トイヨト イヨト 二日

Ingénierie de la photosynthèse : une alternative possible aux ressources fossiles

Contexte scientifique : Optimisation du procédé

- Procédés limités par le transfert de rayonnement
- Optimisation du procédé implique de connaître avec précision le champs de rayonnement
- Nécessité de résoudre l'Equation de Transfert Radiatif au sein du volume de culture

$$\vec{\omega} \cdot \vec{\nabla}_{\vec{r}} L_{\nu}(\vec{r}, \vec{\omega}) = -C\sigma_{ext} L_{\nu}(\vec{r}, \vec{\omega}) + C\sigma_{sca} \int_{4\pi} d\vec{\omega}' L_{\nu}(\vec{r}, \vec{\omega}) p_{\Omega, \nu}(\omega \mid \omega')$$

- $$\begin{split} \sigma_{sca} &: \text{Section efficace de diffusion} & L_{\nu} &: \text{Luminance} \\ \sigma_{ext} &: \text{Section efficace d'extinction} & C &: \text{Concentration de la suspension de} \\ p_{\Omega,\nu} &: \text{Fonction de phase} & \text{micro-organismes} \end{split}$$
- Propriétés radiatives des micro-organismes indispensables à la résolution de l'ETR
- Approximation de Schiff adaptée à l'obtention de ces propriétés radiatives

< □ > < □ > < □ > < □ > < □ > < □ >

Vers une résolution de l'approximation de Schiff

- Approximation de Schiff adaptée pour l'étude des micro-organismes
- Modèle électromagnétique simplifié mais résolution numérique non évidente :
 - $\rightarrow\,$ Fonction de phase aux grands angles pour des particules de formes simples
 - → Particules avec des géométries complexes

- Dans un premier temps, développer une méthodologie de résolution pour des particules à géométries simples (cylindre, sphéroïde)
- Résolution de l'approximation de Schiff par la méthode de Monte Carlo puisque
 - $\rightarrow~$ Schiff conduit à une formulation intégrale des propriétés radiatives
 - → Capacité de la méthode à gérer les géométries complexes

< ロ > < 同 > < 回 > < 回 >

- 1. Approximation de Schiff
- 2. Résolution de l'approximation de Schiff par Monte Carlo
 - 2.1 Sections efficaces
 - 2.2 Fonction de phase
- 3. Analyse de sensibilité paramétrique
- 4. Conclusion

< A > <

Approximation de Schiff

Aspect physique et conditions de validité

 $l(\vec{r}, \vec{e_o}, r_{eq})$: Longueur de traversée au sein de la particule

 $\mathcal{P}(\vec{e}_o, r_{eq})$: Surface projetée de la particule sur un plan perpendiculaire à la direction incidente

(日) (同) (日) (日)

 $x=\frac{2\pi \bar{r}_{eq}}{\lambda_e}\gg 1$: les images de l'optique géométrique sont applicables

 $|m_r-1|\ll 1$: les réflexions et réfractions de la lumière incidente peuvent être négligées

Schiff L., 1956 Physical Review 104 1481-1485

Van de Hulst H.C., 1957 Light Scattering by Small Particles

JERT 2015 - Poitiers

Approximation de Schiff

Formulation des sections efficaces

 $l(\vec{r}, \vec{e_o}, r_{eq})$: Longueur de traversée au sein de la particule

$$\label{eq:product} \begin{split} \mathcal{P}(\vec{e}_o,r_{eq}) &: \text{Surface projetée de la} \\ \text{particule sur un plan} \\ \text{perpendiculaire à la direction} \\ \text{incidente} \end{split}$$

$$\begin{split} \hat{\sigma}_{ext} &= 2 \int_{\mathcal{P}(\vec{e}_o, r_{eq})} 1 - e^{-k_e \kappa_r l(\vec{r}, \vec{e}_o, r_{eq})} \cos\left(k_e (n_r - 1) l(\vec{r}, \vec{e}_o, r_{eq})\right) d\vec{r} \\ \hat{\sigma}_{abs} &= \int_{\mathcal{P}(\vec{e}_o, r_{eq})} 1 - e^{-2k_e \kappa_r l(\vec{r}, \vec{e}_o, r_{eq})} d\vec{r} \\ \hat{\sigma}_{sca} &= \hat{\sigma}_{ext} - \hat{\sigma}_{abs} \end{split}$$

Schiff L., 1956 Physical Review 104 1481-1485 Van de Hulst H.C., 1957 Light Scattering by Small Particles on a Communication of the second sec

- 1. Approximation de Schiff
- 2. Résolution de l'approximation de Schiff par Monte Carlo
 2.1 Sections efficaces
 2.2 Fonction de phase
- 3. Analyse de sensibilité paramétrique
- 4. Conclusion

Résolution de l'approximation de Schiff par Monte Carlo Formulation des sections efficaces

Les solutions de l'approximation de Schiff sont des intégrales.

La méthode de **Monte Carlo** est choisie pour les résoudre en tenant compte de la double intégrations orientation/taille

Pour obtenir une expression statistique compatible avec Monte Carlo, on introduit une fonction densité de probabilité $p_{\vec{R}}$:

$$\hat{\sigma}_{ext} = \int_{\mathcal{P}(\vec{e}_o, r_{eq})} p_{\vec{R}} \underbrace{\frac{2\left[1 - e^{-k_e \kappa_r l(\vec{r}, \vec{e}_o, r_{eq})} \cos\left(k_e (n_r - 1)l(\vec{r}, \vec{e}_o, r_{eq})\right)\right]}{p_{\vec{R}}}_{w_{ext}(\vec{r})}}_{w_{ext}(\vec{r})} d\vec{r}$$

En tenant compte de la double intégrations orientation/taille :

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Delatorre J. and al, 2014 Solar Energy 103 653 - 681

Julien CHARON

JERT 2015 - Poitiers

< ロ > < 同 > < 回 > < 回 >

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

$$p_{R_{eq}}(r_{eq}) = \frac{1}{\sqrt{2\pi}r_{eq}\ln s} \exp\left[-\frac{(\ln r_{eq} - \ln \bar{r}_{eq})^2}{2\ln^2 s}\right]$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} w_{ext}(\vec{r})$$

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

			C 1		D .	\sim	
	m	lien	(1	- Δ	R	• H	NI.
-	•••	ii Ciri	~			<u> </u>	

JERT 2015 - Poitiers

27 Novembre 2015 11 / 17

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

	ion	СН	AR	ON
Ju	iieii		~IV	

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e_o} p_{\vec{E_o}}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

		CU		\sim	
	lien	СН	A	~()	IN.
-					

JERT 2015 - Poitiers

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

		~		•		\sim	N 1
Ju	lien	C	н	A	R	υ	IN .

JERT 2015 - Poitiers

27 Novembre 2015 11 / 17

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

		~		•		\sim	N 1
Ju	lien	C	н	A	R	υ	IN .

JERT 2015 - Poitiers

27 Novembre 2015 11 / 17

Formulation intégrales des sections efficaces

$$\sigma_{ext} = \int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \frac{w_{ext}(\vec{r})}{w_{ext}(\vec{r})}$$

nunen	LHARUN	
Junch		

Formulation intégrales des sections efficaces

Généralisation :

$$\sigma = \int_{4\pi} d\vec{e}_o p_{\vec{e}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} w(\vec{r}) d\vec{r} dr_{eq} p_{R_{eq}}(r_{eq}) d\vec{r} dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} dr_{eq} p_{R_{eq}}(r_{eq}) d\vec{r} dr_{eq} p_{R_$$

$$w_{ext} = 2P(\vec{e}_o, r_{eq}) \left[1 - e^{-k_e \kappa_r l(\vec{r}, \vec{e}_o, r_{eq})} \cos\left(k_e(n_r - 1)l(\vec{r}, \vec{e}_o, r_{eq})\right) \right]$$
$$w_{abs} = P(\vec{e}_o, r_{eq}) \left[1 - e^{-2k_e \kappa_r l(\vec{r}, \vec{e}_o, r_{eq})} \right]$$
$$w_{scq} = w_{ext} - w_{abs}$$

Algorithme :

Tirage de \vec{e}_o Tirage de r_{eq} Tirage de \vec{r} Calcul de w_i N nombre de réalisation de l'algorithme Estimation des sections efficaces σ :

$$\sigma \approx \frac{1}{N} \sum_{i=1}^{N} w_i \pm \sqrt{\frac{1}{N} \left[\sum_{i=1}^{N} w_i^2 - \bar{\sigma}^2 \right]}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Julien CHARON

JERT 2015 - Poitiers

27 Novembre 2015 12 / 17

Sections efficaces - particule sphéroïdale

T-Matrix code : http ://www.giss.nasa.gov/staff/mmishchenko/

Charon J. and aL JQSRT, Nov. 2015 (≡)

Fonction de phase

Fonction de phase

Fonction de phase :

$$p(\vec{e}_{sca} \mid \vec{e}_{inc}) = \frac{W_{sca}}{\sigma_{sca}}$$

Petit angles de diffusion $\theta_{sca} < \theta_l$:

$$\hat{W}_{sca} = \left| \int_{\mathcal{P}(\vec{e}_o, r_{eq})} \underbrace{\frac{k_e}{2\pi} e^{ik_e \theta_{sca}(y\cos\phi_{sca} + z\sin\phi_{sca})} \left[1 - e^{-ik_e(m_r - 1)l(\vec{r}, \vec{e}_o, r_{eq})} \right]}_{f(\vec{r})} d\vec{r} \right|^2$$

Grand angles de diffusion $\theta_{sca} > \theta_l$:

$$\hat{W}_{sca} = \frac{r}{\sin^n(\theta_{sca}/2)} \frac{1 + \cos^2(\theta_{sca})}{2}$$

Dauchet J. and al, 2015, JQSRT, 161, 60-84

Julien CHARON

JERT 2015 - Poitiers

Fonction de phase

$$\hat{W}_{sca} = \left| \int_{\mathcal{P}(\vec{e}_o, r_{eq})} f(\vec{r}) d\vec{r} \right|^2 = \Re e^2 \int_{\mathcal{P}} f(\vec{r}) d\vec{r} + \Im m^2 \int_{\mathcal{P}} f(\vec{r}) d\vec{r}$$

En utilisant le fait que

$$\begin{aligned} \Re e^2 \int_{\mathcal{P}} f(\vec{r}) d\vec{r} &= \Re e\left(\int_{\mathcal{P}} f(\vec{r}_1) d\vec{r}_1\right) \Re e\left(\int_{\mathcal{P}} f(\vec{r}_2) d\vec{r}_2\right) \\ &= \int_{\mathcal{P}} \Re e\left(f(\vec{r}_1)\right) d\vec{r}_1 \int_{\mathcal{P}} \Re e\left(f(\vec{r}_2)\right) d\vec{r}_2 \\ &= \int_{\mathcal{P}} d\vec{r}_1 \int_{\mathcal{P}} d\vec{r}_2 \Re e\left(f(\vec{r}_1)\right) \Re e\left(f(\vec{r}_2)\right) \end{aligned}$$

et en procédant de même pour la partie imaginaire, on obtient

$$\hat{W}_{sca} = \int_{\mathcal{P}} d\vec{r_1} \int_{\mathcal{P}} d\vec{r_2} \left[\Re ef(\vec{r_1}) \Re ef(\vec{r_2}) + \Im mf(\vec{r_1}) \Im mf(\vec{r_2}) \right]$$

Julien CHARON

27 Novembre 2015 13 / 17

э

(日) (四) (日) (日) (日)

Section efficace différentielle de diffusion

$$\hat{W}_{sca} = \int_{\mathcal{P}} d\vec{r_1} \int_{\mathcal{P}} d\vec{r_2} \left[\Re ef(\vec{r_1}) \Re ef(\vec{r_2}) + \Im mf(\vec{r_1}) \Im mf(\vec{r_2}) \right]$$

En introduisant la densité de probabilité uniforme $p_{R_1}=p_{R_2}=\frac{1}{\mathcal{P}(\vec{e_o},r_{eq})}$:

$$\hat{W}_{sca} = \int_{\mathcal{P}} d\vec{r_1} p_{R_1} \int_{\mathcal{P}} d\vec{r_2} p_{R_2} \underbrace{\frac{\Re ef(\vec{r_1}) \Re ef(\vec{r_2}) + \Im mf(\vec{r_1}) \Im mf(\vec{r_2})}{p_{R_1} p_{R_2}}}_{w(\vec{r_1}, \vec{r_2})}$$

et en tenant compte de la double intégrations orientation/taille :

$$W_{sca} = \int_{4\pi} d\vec{e_o} p_{\vec{E}_o}(\vec{e_o}) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r_1} p_{R_1} \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r_2} p_{R_2} w(\vec{r_1}, \vec{r_2}) d\vec{r_1} p_{R_1} \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r_2} p_{R_2} w(\vec{r_1}, \vec{r_2}) d\vec{r_1} p_{R_1} \int_{\mathcal{P}(\vec{e_o}, r_{eq})} d\vec{r_1} p_{R_1} d\vec{r_2} p_{R_2} w(\vec{r_1}, \vec{r_2}) d\vec{r_2} w(\vec{r_1}, \vec{r$$

(日) (四) (日) (日) (日)

Section efficace différentielle - particule cylindrique

Comparaison Schiff's approximation - T-Matrix

T-Matrix code : http ://www.giss.nasa.gov/staff/mmishchenko/

- 1. Approximation de Schiff
- 2. Résolution de l'approximation de Schiff par Monte Carlo
 2.1 Sections efficaces
 2.2 Fonction de phase
- 3. Analyse de sensibilité paramétrique
- 4. Conclusion

A B A A B A

Sensibilités

Sensibilités

$$\sigma = \int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \boldsymbol{w}$$
$$\partial_{\pi} \sigma = \partial_{\pi} \cdot \left[\int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \boldsymbol{w}(\pi) \right]$$
$$\partial_{\pi} \sigma = \int_{4\pi} d\vec{e}_o p_{\vec{E}_o}(\vec{e}_o) \int_0^\infty dr_{eq} p_{R_{eq}}(r_{eq}) \int_{\mathcal{P}(\vec{e}_o, r_{eq})} d\vec{r} p_{\vec{R}} \partial_{\pi} \boldsymbol{w}(\pi)$$

Notre algorithme de Monte Carlo estime simultanément les trois sections efficaces et leurs dérivées par rapport au paramètre $\pi = \{\lambda_e, n_r, \kappa_r\}$:

- avec la même formulation intégrale \equiv même algorithme \equiv même procédure d'échantillonnage
- sans augmentation significative du temps de calcul numérique

Delatorre J., 2014 Solar Energy 103 653 - 681

Julien CHARON

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion et Perspectives

Conclusion

- Approximation de Schiff validée avec T-Matrice
- Le même algorithme de Monte Carlo estime $\sigma_{abs}, \sigma_{sca}, \sigma_{ext}$, leurs sensibilités à λ_e, κ_r, n_r et les incertitudes associées avec les temps de calcul suivant : Cylindre : 13s Sphéroïde : 8s Incertitude $\leq 0.2\%$
- Application de l'approximation de Schiff à des géométries complexes (projet IDEX Algue) en collaboration avec une entreprise d'ingénierie informatique Meso-Star

Perspectives

Résolution des équations de Maxwell en utilisant le formalisme vectoriel

EDStar : http ://edstar.lmd.jussieu.fr/

< □ > < □ > < □ > < □ > < □ > < □ >

Merci pour votre attention

Julien CHARON

JERT 2015 - Poitiers

27 Novembre 2015 16 / 17

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

Sections efficaces - particule cylindrique

Charon J. and al, JQSRT, Nov. 2015

Julien CHARON

JERT 2015 - Poitiers

27 Novembre 2015 17 / 17

э

< □ > < □ > < □ > < □ > < □ > < □ >

Section efficace différentielle - particule sphéroïdale

Comparaison Schiff's approximation - T-Matrix

Analyse de sensibilité - validation

- ∢ 🗗 ▶

э

17 / 17