Amélioration des propriétés radiatives des récepteurs solaires surfaciques haute température par microstructuration

> LABORATOIRE PROCÉDÉS, MATÉRIAUX et ENERGIE SOLAIRE

.UPR 8521 du CNRS. conventionnée avec l'université de Perpignan

PROCESSES, MATERIALS and SOLAR ENERGY LABORATORY

Florent Larrouturou Doctorant

Cyril Caliot Chargé de Recherche Cyril.Caliot@promes.cnrs.fr

Gilles Flamant Directeur de Recherche

JERT 2015 Journées d'étude en Rayonnement Thermique

26-27 novembre 2015, ISAE-ENSMA, Poitiers

Projet NOOR Ouarzazate, Maroc

NOOR 3 en construction (2015-2017):

- Tour (225 m)
- HTF sels fondus (290-565 °C)
- Stockage sels fondus 8h
- Turbine vapeur 150 MW
- 0.15 USD/kWh (13 c€/kWh)

NOOR 2 en construction (2015-2017):

- Cylindro-parabolique
- HTF huile thermique (293-393°C)
- Stockage sels fondus 7h
- Turbine vapeur 200 MW
- 0.14 USD/kWh

NOOR 1 (2015):

- Cylindro-parabolique
- HTF huile thermique (293-393°C)
- Stockage sels fondus 3h
- Turbine vapeur 160 MW
- Investissement 1.042 milliards €
- 0.189 USD/kWh

Fonctionnement de centrale à tour

Solutions d'amélioration

Concentration Champs d'héliostats

Optimiser la disposition du champ Améliorer l'optique des héliostats Augmenter la réflectivité Augmenter la durabilité des héliostats Standardiser le champ

Rendements

 η_{hel}

 η_{rec}

 η_{gen}

Récupération Optimiser les propriétés radiatives Récepteur Augmenter la durabilité des matériaux Améliorer le fluide caloporteur Augmenter les échanges thermiques Stockage Stockage direct du fluide caloporteur Augmenter la température du stockage Thermocline Augmenter la température Transformation η_{thermo} Améliorer l'hybridation Standardiser

Propriétés radiatives sélectivités

- La sélectivité spectrale idéale permet une absorption maximale du flux solaire et une émission infrarouge minimale $$_{\rm x\,10^4}$$

• La sélectivité directionnelle caractérise la dépendance angulaire du flux réfléchi => Augmenter α_{sol} dans les récepteurs cavité (nbre de réflexions)

Objectif et démarche

<u>Objectif</u>

- Augmenter le rendement de récepteurs solaires à haute température
- Quantifier l'influence des propriétés radiatives sur les rendements de centrale
- Améliorer les propriétés radiatives des récepteurs

Démarche

- 1. Développer un modèle de récepteur haute température (et un modèle de centrale)
- 2. Réaliser une étude de sensibilité avec les propriétés radiatives comme paramètres
 - Sélectivité spectrale
- 3. Etudier l'influence de la microstructure sur les propriétés radiatives

Hypothèses

- Parois isothermes, opaques
- Milieu non participant
- Optique géométrique
- Absence de vent
- Absence de conduction/convection en face arrière

Paramètres

- Géométrie (plan/cavité)
- Propriétés radiatives spectrales
- Température des parois

$$\eta_{rec} = 1 - \frac{P_{ref} + P_{em} + P_{conv}}{P_{inc}}$$

Modèle de récepteur

P_{ref} et P_{em} sont calculés par des simulations Monte-Carlo (cavité)

 $P_{conv} = h S (T_w - 300K)$

Pertes par convection du récepteur cavité, S=36m² :

Modèle de Clausing : *h* = 7.3 W m⁻² K⁻¹

(CFD : $h = 6.4 \text{ W m}^{-2} \text{ K}^{-1}$; Paitoonsurikarn : $h = 6.8 \text{ W m}^{-2} \text{ K}^{-1}$)

Pertes par convection du récepteur plan (Ra ~ 5.10¹⁰) S=9m² :

Modèle de Churchill and Chu : h = 5.8 W m⁻² K⁻¹

Modèle de centrale

 $\eta_{global} = \eta_{hel} \eta_{rec} \eta_{thermo} \eta_{gen}$

Rendement optique du champ d'héliostats η_{hel} = 70 %

Rendement thermodynamique endoreversible

Rendement de Chambadal-Novikov

Prise en compte des irréversibilités lors des échanges avec l'extérieur

$$\eta_{thermo}$$
 = 1- $\sqrt{\frac{T_f}{T_c}}$ $T_c = T_w - 150 \text{ K}$

Rendement générateur $\eta_{gen} = 95 \%$

Récepteur HT de référence

<u>Récepteur de référence</u> en α -SiC Parois diffuses ($\rho \sim 0.2$)

Cavité (T=1100 K) ; η_{ref} = 22.8 % Plan (T=1200 K) ; η_{ref} = 21.4 %

cavité : η_{rec} ; η_{thermo} ; $\eta_{global} = f(T_w)$

Plan ; C = 580

Cavité ; C = 580

Etude paramétrique Conclusion

	<u>Plan</u>	<u>Cavité</u>
<u>Récepteur de référence (gris)</u>	21.4 %	22.8 %
α = ε = 0,8 Réflectivité diffuse (ad = 1)	1100 K	1100 K
<u>Récepteur corps noir</u>	26.9 %	25.7 %
$\alpha = \varepsilon = 1$	1200 K	1200 K
<u>Sélectivité spectrale</u> (ad = 0,1)	22.7 %	23 %
$\alpha=0.8$; ϵ = 0.2 ; λc = 2 μm	1300 K	1200 K
Sélectivité spectrale idéale	29.2 %	27.8 %
$lpha$ = 1 ; ϵ = 0 ; λc = 2 μm	1400 K	1300 K

Utiliser la sélectivité spectrale naturelle de matériaux réfractaires Maximiser α_{sol} par microstructuration de la surface

Matériaux et spécifications

Choix de **ZrC, ZrB2, TaC** pour leur tenue à haute température sous air <u>Objectif</u> : atteindre une sélectivité quasi-idéale en **microstructurant** la surface du TaC

RCWA (GD-Calc)

Tac

Microstructuration bipériodique

Forme p = *d* = 500 *nm*

Emissivité normale

Microstructuration : $\alpha_{sol} = \int \varepsilon_{\lambda} I_{s\lambda} d\lambda / \int I_{s\lambda} d\lambda$

 $\varepsilon_{\rm IR} = \int \varepsilon_{\lambda} I_{b_{\lambda}}(T) d\lambda / \int I_{b_{\lambda}} d\lambda$

Influence de la géométrie et des dimensions sur αsol et εir

asol et ɛlr pour différentes géométries et périodes

Hauteur fixée à 1000 nm. Périodes de 200 (points clairs) à 1000 nm (foncés)

Croix inclinée : rectangulaire ; croix inclinée : elliptique ; triangle : pyramide 0.3 ; carré : pyramide 0.5 : rond: pyramide ; losange : pyramide 2

Conclusion et perspectives

Conclusions

Valeurs des **températures maximales** de parois de récepteurs solaires (fonctionnement sans hybridation) : **1200 K** pour une paroi noire

L'absorptivité solaire est le paramètre clé à maximiser.

Etude de l'émissivité normale de microstructures bi-périodiques

- forte influence de la forme (hauteur, période)
- relief pyramidal
- augmentation concomitante de a_{sol} et $m{\epsilon}_{IR}$

Perspectives

Tests de tenue en température sous air de matériaux HT (TaC, ZrC, ZrB2, épaisseur d'oxyde)

Réalisation de microstructures et mesure de réflectivité spectrale

Calcul de l'émissivité hémisphérique de reliefs bi-périodiques

Merci de votre attention

Indices optiques du TaC

- 1. Fabrication des échantillons
- 2. Mesure de la réflectivité
- 3. Calcul des indices de réfractions

Equations de Kramers-Kronig

$$\boldsymbol{n}(\lambda) = \frac{1 - R(\lambda)}{1 + R(\lambda) - 2\sqrt{R(\lambda)}\cos\theta(\lambda)}$$
$$\boldsymbol{n}(\lambda) = \frac{-2\sqrt{R(\lambda)}\sin\theta(\lambda)}{1 + R(\lambda) - 2\sqrt{R(\lambda)}\cos\theta(\lambda)}$$

INTRODUCTION

Concentration

Récepteur mobile

Récepteur fixe

Concentration linéaire

 $\begin{array}{l} \mbox{Concentration}\approx 100\\ \mbox{Température fluide}\approx 800\mbox{-}900\mbox{ K} \end{array}$

Cylindro-parabolique

Fresnel

Concentration ponctuelle

Concentration > 1000 Température fluide > 1000 K

