Caractérisations tomographiques de mousses métalliques : Structure et propriétés mécaniques

J. Adrien, E. Maire, MATEIS - INSA de Lyon

Intérêts de l'imagerie 3D par tomographie RX

- Meilleure vision de la microstructure
 - Pas de règles stéréographiques à appliquer
 - Cas des formes complexes (percolation)
 - Accès à des paramètres inaccessibles en 2D (nombre)
- Pas de perturbation liée à la surface
 - Pas d'artefact de préparation
 - Pas de relaxation des contraintes (endo.)

Plan

- Principe
- Exemples
 - visualisation
 - quantification
 - Essais in-situ
- Conclusions & perspectives

Principe

La radiographie

Rayons X

I_o

Echantillon

Х

Détecteur

Λ

Loi de Lambert-Beer:

$$\frac{I}{I_o} = \exp \int -\mu dx$$

μ, coefficient d'atténuation linéaire

Principe Objet Ligne d'un détecteur Ray. **Pixel** mesure $I=I_0exp(-\mu x)$ Χ Intégrale de l'absorption µ Ce qu'on a : le long du trajet x Valeur de µ en tout point Ce qu'on le long du trajet x voudrait:

Principe

Solution, faire des images de l'objet sous plusieurs angles + reconstruction informatique

Calcul de la carte μ (x,y)

Du 2D au 3D: Reconstruction tomographique

10 mm

Jérôme ADRIEN - Eric MAIRE – MATEIS INSA de Lyon

10 mm

Faisceau polychromatique ou monochromatique

Resolution : 20 nm mini.

temps d'acquisition ~ moins d'1 seconde au mini.

moteurs et détecteurs très précisflux de photons important

Tomographe de laboratoire

Phoenix V tome X Detecteur Varian Paxscan (1920x1536 pixels) Tube RX à microfoyer (taille source de ~ 1 à 4 µm) Faisceau polychromatique Resolution : 1 - 150 µm temps d'acquisition ~ 15 à 60 min.

Exemples absorption/résolution

1000 pixels

Jérôme ADRIEN - Eric MAIRE – MATEIS INSA de Lyon

IFP

5 mm

ièse d'Olivier Caty e d'Alexandre Fallet

0

Environnement échantillon / essais in-situ

✓ Traction/compression

Jusqu'à 5000N Vitesse : 0.1 µm/s à qqs mm/s dépl maxi : 10 à 15 mm

✓ Four

- ✓ Double torsion
- ✓ Platine cryogénique

✓ Traction à chaud

Ecoulements gravitaires, cas des silos

Silo modèle dans le tomographe

Reconstruction 3D Tomographie X – état initial

130 mm

Radiographies 2D Jérôme ADRIEN - Eric MAIRE – MATEIS INSA de Lyon

Analyses qualitatives

Analyses quantitatives

Analyse d'objets

- Cellules fermées
 - Étiquetage
 - Calcul des paramètres morphologiques des étiquettes
 - Volume, surface, centre de gravité, forme
 - Moments d'inertie

	Volume	Surface	sphericity	Α	В	С	Fab	Fac	Fbc
	(µm3)	(µm2)		(µm)	(µm)	(µm)			
Mean	2,9077459	10,375430	0,815919327	0,8789	0,6151	0,4788	1,4506	1,8620	1,2869
Min	0,0231667	0,4270259	0,449953711	0,15	0,1534	0,1496	1	1	1,0042
Max	32,965457	69,509613	0,929263880	2,7035	1,7177	1,2292	4,5503	7,2048	2,4955
VC (%)	127,72%	87,29%	10,66%	49,79%	39,91%	35,30%	29,09%	35,24%	18,87%

Number = 500 analysed particules (touching borders excluded)

Cellules ouvertes densité locale, épaisseur poutre, taille des cellules (qui doivent être fermées par morphologie mathématique)

Dillard et al. (poster)

Nieh *et al*.

Fig. 3. Synchrotron tomographic image of AA6101 Al foam at a resolution of 23 µm. The structure is predominately open-celled. The rough surface of cell walls (edges) is a result of the casting process.

Raw material section

2-D section

Segmented image (watershed)

3-D calculation

Nitech Ni Foam

ERG Al Foam

Granulomètrie 3D = Ouvertures successives

A = Initial

B = Initial + érosion + dilation **de taille 1** Différence entre A and B

Fraction volumique de la différence Fraction de matière (%) 2468.... Size (voxel)

Connections

Nombre, Taille intersection, taille des voisins de chaque porosité...

Tortuosité

Tortuosité = trajet réel / trajet direct

Essais in-situ

Deformation de mousses Al (compression)

IFAM MRS bulletin 2003

Initial

Deformé

Alporas

5 mm

Formgrip

Deformation de mousses de nickel

Dillard et al. Phil Mag

de Lyon

Indentation

Fatigue avec le tomographe de laboratoire Exemple: empilement de sphères creuses

Mécanismes d'endommagement

Mécanismes d'endommagement

fissures ! bandes de déformations

Maillages coques avec épaisseurs récupérées sur les images

Conclusion

- Technique appropriée aux matériaux cellulaires
- Caractérisation de la microstructure
 - visualisation
 - quantification
 - Essais in-situ

Perspectives

- Résolution spatiale
- Résolution temporelle