

Etude de la capture de CO₂ et N₂ dans des semi-clathrates de TBAB par spectroscopie Raman: influence des gaz piégés sur la structure

Bertrand CHAZALLON

Techniques expérimentales et compétences:

o <u>Spectroscopie optique et masse</u>: Diffusion Raman, Spectroscopie IRTF, Interférométrie, Spectrométrie de masse, Désorption Laser o <u>Diffraction</u> X/Neutrons

o Applications:

- Techniques du vide: Déposition à partir de la phase vapeur (glace, hydrates), croissances de couches minces (glace amorphe, cristalline), équilibre de phase, analyse phase gaz etc
- Techniques hautes pressions: jusqu'à 200 bar et très haute pression (Gpa) (cellule à enclume diamant) synthèse d'hydrates à haute pressions, glace etc...

Exemples d'appareillages disponibles dans le groupe:

- 2 Spectromètres de masse à temps de vol avec dispositif de contrôle et d'acquisition + couplage Laser à colorant impulsionnel 220-400 nm, Lasers OPO accordable (2.5 4 μm) pompé par laser Nd:YAG, Laser excimère à 157 nm, source à 118 nm (cellule Xe)
- MALDI-TOF-MS (dispositif commun)
- Cryostat He UHV, cryostat LiqN₂ pour la microscopie
- 2 spectromètres de masse quadripolaire
- Chambre froide et enceinte de préparation monocristaux de glace (-10°/-30°C, -4°/+4°C)
- Générateur de gaz étalon pour mélanges de gaz calibrés
- Micro-spectromètre Raman (Renishaw) + micro-FTIR (Brucker)
- Hygromètre cryogénique

Davidson, 1973

TBAB.26H₂O Type A

Thermodynamic Promoters: alkyl-amines

 $[(n-C_4H_9)_4N^+] X^- . yH_2O, \text{ with } X = F, CI, Br, I, CH_3CO_2, ...$ $[(i-C_5H_{11})_4N^+] X^- . yH_2O, \text{ with } X = F, CI, Br, I, CH_3CO_2, ...$

Structure: semi-clathrates (Fowler, et al., 1940, McMullan & Jeffrey, 1959)

Phase diagrams Aladko et al., J.Struct.Chem. 2002

Attribution des structures en fonction du nombre d'hydratation, de la composition, du point de fusion

Stablest structure at w_{TBAB} > 18.8 wt% ?

Attribution des structures en fonction du nombre d'hydratation, de la composition, du point de fusion

Structure type B (n = 38): -Type B: Orthorhombic (*Pmma*) Unit cell cavity content: $6 \times 5^{12} + 4 \times 5^{12}6^2 + 4 \times 5^{12}6^3$ (6D4T4P) a = 21.06 Å, b,c = 12.018 Å (Shimada et al., 2005 ; Dyadin & Udachin, 1984)

Structure solved

Stablest structure at w_{TBAB} < 18.8 wt% ?

- Composition: w_{TBAB} = 0.32 (wt frac.)
- Melting point: 283 K (9.85°C)
- Hydration number: n = 38
 Shimada et al., 2005
 Dyadin & Udachin, 1984

Structural properties of TBAB semi-clathrates

Semi-clathrates	Tm (melting) /K (°C)	Space group	Unit cell / Å	Unit cell cavity content	
Bu₄NBr.2.3H₂O	296.65 (23.5)	R3c	a/α = 16.6/90°; b/β = 16.6/90°; c = 38.85/120°		
Bu ₄ NBr.3H ₂ O	288.15 (15)				
Bu ₄ NBr.24H ₂ O	285.55 (12.4)	C2/m	a = 28.5 ; b = 16.9 ; c = 16.5 ; β = 125°		
Bu ₄ NBr.26H ₂ O	288.35 (12.2)	P4/mmm	a = 23.9 ; c = 50.8		
Bu ₄ NBr.32H ₂ O	284.75 (11.6)	P4/m	a = 33.4 ; c = 12.7 (Dyadin & Udachin, 1984)		
Bu ₄ NBr.32H ₂ O	285.65 (12.5)	P4 ₂ /m	a = 23.6 ; c = 12.5 (McMullan & Jeffrey, 1959;	$10 \times 5^{12} + 16 \times 5^{12} 6^2 + 4 \times 5^{12} 6^3$	
			Rodionova et al., 2013)	(туре А)	
Bu₄NBr.36H₂O	282.65 (9.5)	Pmmm	a = 21.3 ; b = 12.9 ; c = 12.1		
			(Dyadin & Udachin, 1984)		
Bu ₄ NBr.38H ₂ O	283 (9.85)	Pmma	a = 21.06 ; b = 12.6 ; c = 12.02	6 x 5 ¹² + 4 x 5 ¹² 6 ² + 4 x 5 ¹² 6 ³	
2 TBAB / Unit cell			Shimada et al., 2005	(Type B)	

- 5¹² cages are vacant

- selective trapping (CH_4/C_3H_8 and CH_4/C_2H_6)

→ Applications

- **o** refrigeration & air conditioning
- $\circ~$ Gas separation and $\rm CO_2$ capture

P.LAM*

CINIS

Université de Lille 1 sciences 1 et technologies

DISPOSITIFS et METHODES

Université de Lille 1 sciences 1 et technologies

P.LAM*

CNIS

Raman shift (cm⁻¹)

é

T/°C	P/Mpa	Structure type	Composition	Max CO ₂ content (Wt%)	Territory and the second	PEAN	Ų
			TBAB, W = 5wt%				
7.9	0.74	Type A (+ Type B)	Type A = $H_{11} = 2CO_1 TBAB 32H_1O_1$	8.9			
10.4	1.61	Type B (+ new phase)	Type B = H_{ac} = 3CO ₂ TBAB 38H ₂ O	11.6			
12.6	2.80	new phase	?	?			
		Fukumoto et al., 2014	<i>Type A = 6CO</i> ₂ .6TBAB.172H ₂ O	5			
			TBAB, W = 40wt%				
14.8	1.45	Type A + Type B		8.9			
14.9	1.55	Type B		11.6			
16.5	2.43	Type B		11.6			
17.5	3.05	Туре В		11.6			
13.1	1.16	New Phase	H ₃₈ = 1.5CO ₂ .TBAB.38H ₂ O	6.5 (exp)			
		(Muromachi 2014)					
			IBAB, W = 10Wt%		_		
9.5	1.08	New Phase (Muromachi 2014)	H ₃₈ = 1.8CO ₂ .TBAB.38H ₂ O	7.5 (exp)			
			ΓΒΑΒ, W = 32wt%				
12.9	1.13	New Phase	H ₃₈ = 1.4CO ₂ .TBAB.38H ₂ O	5.6 (exp)			
	1 77	(Nuremachi 2014)	H = 1.800 TBAB 38H 0	7 3 (evn)			

Système N₂-TBAB-H₂O

5wt% TBAB + CO₂ gaz (5.8 – 13.2 MPa) et (10.5 – 13.8°C)

T/°C	P/Mpa	Structure type	Composition	Max N ₂ content (Wt%)				
TBAB, W = 5wt% (This work)								
10.5 11.4 13.4 13.8	5.8 7.7 11.8 13.2	Type B B → Type A B → Type A Type A + Type B	Type B = H_{38} = $3N_2$.TBAB.38 H_2O Type A = H_{32} = $2N_2$.TBAB.32 H_2O Type A = H_{32} = $2N_2$.TBAB.32 H_2O Type B = H_{38} = $3N_2$.TBAB.38 H_2O	7.7 4.4 4.4 7.7				
TBAB, W = 20wt% (Muromachi et al. 2016)								
7.8 10.8	2.1 5.8	Type B Type B (Muromachi et al. 2016)	Type B = H ₃₈ = 0.1N ₂ .TBAB.38H ₂ O Type B = H ₃₈ = 1.5N ₂ .TBAB.38H ₂ O	0.3 (exp) 4 (exp)				

Système CO₂-N₂-TBAB-H₂O

 \succ 5wt% TBAB + CO₂ + N₂

Conclusion and perspectives

Hydrate de TBAB type A = H₃₂ et non H₂₆ comme supposé jusqu'alors
 CO₂ (ou N₂) modifie la structure originelle de TBAB-hydrate formé sans molécules de gaz « invités »
 Chazallon et al., J.Phys. Chem B, 2014
 Nouvelle structure d'hydrate identifiée en Raman à W_{TBAB} = 5wt% et P_{CO2} > 1 MPa
 A comparer avec celle obtenue en DRX (Muromachi et al., 2014) à W_{TBAB} = 10-40 wt% et P_{CO2} ~ 1.1 MPa

□ Influence sur la structure pour les mélanges N₂+CO₂-TBAB-H₂O

→ important pour évaluer %CO₂ piégé
 → forme et taille molécule de gaz

25LAT

Université

de Lille 1 sciences 1 et technologies

students: P-Y. Bourgin, R. Manita