

Séparation de biogaz par cristallisation d'hydrates Etude cinétique et thermodynamique

Didier Dalmazzone Luiz Paulo Sales Silva

Plan de la présentation

• Introduction

Contexte et principe

- Hydrates clathrates
- Hydrates semi-clathrates
- Mesures thermodynamiques

Hydrates mixtes de TBPB Hydrates mixtes de TBPO

• Mesures cinétiques

Dispositif et protocole expérimental Essais cinétiques sur les hydrates de TBAB et TBPB Test d'additifs cinétiques

Conclusion

Journée thématique SFT 22/01/2016

AIR LIQUIDE Contexte : le projet Bioval CENTRALE

Campus Paris Saclay FONDATION DE COOPERATION SCIENTIFIO

Biogaz :

- CH_4 (50 60 %), CO_2 (40 50 %), H_2S (1 2 %)
- Autres polluants (traces)

Objectifs:

- Dépollution (H₂S, autres polluants)
- Valorisation énergétique (CH₄)
- Valorisation matière (CO₂)

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Didier Dalmazzone

Les hydrates clathrates de gaz

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Didier Dalmazzone

Modélisation des hydrates clathrates

Modèle classique de Van der Waals et PLatteuw

$$\frac{\Delta v_{w}^{\beta-0}P}{R\overline{T}} - \sum_{i}^{cavities} v_{i} \ln\left(1 + \sum_{j}^{guest} C_{ij}f_{j}\right) - \frac{\Delta \mu_{w,0}^{\beta-0}}{RT} + \frac{\Delta h_{w,0}^{\beta-0} + \frac{b}{2}T_{0}^{2} - aT_{0}}{R}\left(\frac{1}{T_{0}} - \frac{1}{T}\right) + \left(\frac{a - bT_{0}}{R}\right) \ln\left(\frac{T_{0}}{T}\right) - \frac{b}{2R}\left(T - T_{0}\right) - \ln a_{w} = 0$$

 β : phase de référence (hydrate « vide »)

 $T_0 = 273.15 \text{ K}$;

 v_i : nombre de cavités de type *i* par maille élémentaire

 f_i : fugacité de l'espèce j

 C_{ii} : constante de Langmuir du couple gaz *j* / cavité *i*

Les C_{ij} sont estimées grâce à l'approximation de Parrish et Prausnitz : $C_{ij} = \frac{A_{ij}}{T} \exp\left(\frac{B_{ij}}{T}\right)$

Les paramètres A_{ii} et B_{ii} sont tirés de la littérature

 v_w , μ_w et h_w : volume molaire, potentiel chimique et enthalpie molaire de l'eau en phases hydrate et liquide

a_w : activité de l'eau en phase liquide

a et b représentent la dépendance en température de la capacité calorifique de l'eau : $C_{pw} = a + b(T - T_0)$

Séparation de gaz par cristallisation d'hydrates

Problèmes :

- La formation des hydrates clathrates requiert une pression élevée et une température basse (15 à 50 bar ; 0 à 5 °C)
- La compression des gaz et le refroidissement de l'eau sont coûteux
- Faible sélectivité \rightarrow procédé multi étage

Cas d'un biogaz contenant 60 % $\rm CH_4$ / 40 % $\rm CO_2$

Conditions opératoires : 3 à 5°C; 23 à 30 bar

4 étages nécessaires pour atteindre 95 % CH₄

La présence de 1 % de H₂S permet de réduire la pression de formation mais rend le procédé plus complexe

→ Pour réduire la pression et augmenter la température de formation et la sélectivité : hydrates semi-clathrate mixte sel + gaz

Les hydrates semi-clathrates salins

Les composés [(*n*-Bu)_k(*iso*-Am)_{4-k}N⁺ ; X⁻] ou [(*n*-Bu)_k(*iso*-Am)_{4-k}P⁺ ; X⁻] forment des hydrates à forte teneur en eau (Fowler 1940, McMullan et Jeffrey 1959, Dyadin et Udachin 1984)

- H₂O forme des cages polyédriques où sont insérées les branches *n*-Bu ou *iso*-Am du cation
- L'anion (X = F, Cl, Br, OH, NO₃...) se substitue à une molécule H₂O dans le réseau cristallin

• Ex. :

TBAB.32H₂O

Shimada *et al.* Acta Crystallographica 2003

Hydrate	$T_{fus}(^{\bullet}C)$
iAm_3BuNF . 32 H_2O	29,5
iAm_2Bu_2NF . 32 H_2O	30
iAm_2Bu_2NF . 38 H_2O	29,9
$iAmBu_3NF$. 32 H ₂	29,9
Bu_4NF . 28 H_2O	27,4
iAm ₄ NCl . 38 H ₂ O	29,8
Bu_4 NCI . 30 H ₂ O	15,1
Bu ₄ NBr . 24 H ₂ O	12,4
Bu_4NBr . 32 H_2O	12,5
Bu ₄ NOH . 28 H ₂ O	27,4
Bu_4NNO_3 . 26 H ₂ O	5,4
Bu ₄ PBr . 32 H ₂ O	8,9
iAm ₄ PBr . 32 H ₂ O	30

Modélisation des semi-clathrates salins

L'équation d'équilibre tient compte de la dissociation du sel en phase aqueuse

$$\frac{\Delta v^{0}}{RT}(P-P_{0}) - \sum_{i=1}^{cavities} v_{i} \ln\left(1 - \sum_{j=1}^{guests} Y_{ij}\right) + \frac{\Delta g^{0}(T_{0}, P_{0})}{RT_{0}} + \frac{\Delta h^{0}}{RT}\left(1 - \frac{T}{T_{0}}\right) + v_{C} \ln(x_{C}\gamma_{C}) + v_{A} \ln(x_{A}\gamma_{A}) + v_{w} \ln(x_{w}\gamma_{w}) = 0$$

Le semi-clathrate (sans gaz) est pris comme phase de référence pour les hydrates mixtes

Le taux d'occupation des cavités est exprimé comme pour les clathrates par :

$$Y_{ij} = \frac{C_{ij}f_{j}}{1 + \sum_{k=1}^{N_{g}} C_{ik}f_{k}}$$

Les constantes de Langmuir sont calculées par l'approximation du potentiel d'interaction gaz/cavité par un potentiel de puits carré :

$$C_{ij} = \frac{4\pi}{kT} V_{ij}^{cell} \exp\left(\frac{\varepsilon_{ij}^{cell}}{kT}\right)$$

Les fugacités et coefficients d'activité des espèces dans les phases fluides sont obtenus grâce à l'équation d'état SAFT-VRE

Modélisation des semi-clathrates salins : résultats

 $v_{w} = 38$

0.3 0 *W*_{TBPB}

0.4

0.5

0.6

 Δ

0.1

0.2

 $v_{w} = 24$

Journée thén

Modélisation des semi-clathrates salins : résultats

Prédiction des enthalpies de dissociation : $\Delta h_{dis} = -T^2 \partial (\Delta g_{dis} / T) / \partial T$

Salt	\mathcal{V}_{W}	$\Delta h_{\rm dis}^{\rm cal} \; ({\rm kJ} \cdot {\rm mol}^{-1})$	$\Delta h_{\rm dis}^{\rm exp}$ (kJ·mol ⁻¹)
TBAB	38	199.2	201 , 219
	26	149.1	151 , 152 , 153
	32	179.1	179
TBAC	30	163.1	157 , 164
	24	141.1	128
	32	213.0	203
TBAF	29	202.3	174
	38	196.2	-
TBPB	32	186.3	187

Séparation de biogaz par cristallisation d'hydrates

Modélisation des semi-clathrates salins : résultats

Modélisation des hydrates mixtes sel + gaz

Plusieurs hydrates semi-clathrates mixtes avec différents gaz ont été modélisés avec succès

Les hydrates comportant des mélanges de gaz sont en cours d'étude

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Prédiction de la sélectivité des semi-clathartes : le cas H₂ / CO₂

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Didier Dalmazzone

Mesures thermodynamiques

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Didier Dalmazzone

Dispositifs expérimentaux : HP-DSC

T:-50 ~ +120 °C P_{max} 400 bar Mesures : T_{diss} à p imposée $\Delta_{diss}H$ C_p

Bromure de tétrabutylammonium (TBPB)

Nouvel additif : tributylphosphine oxyde (TBPO)

Mesures cinétiques

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Didier Dalmazzone

Dispositifs expérimental : réacteur instrumenté

Réacteur agité de 400 ml

Capteurs *p*, *T*

Echantillonnage en phase vapeur \rightarrow analyseur GC

Echantillonnage en phase liquide → analyse par réfractométrie

Bilan matière \rightarrow compositions des phases

Temps d'induction

Journée thématique SFT 22/01/2016

Didier Dalmazzone

Mode opératoire

Objectif : maîtrise du temps d'induction en exploitant l'effet mémoire

1er cycle :

Application d'une force motrice élevée : $T_{min} = 2 \ ^{\circ}\mathrm{C}$ Dissociation à 18 °C

2ème cycle :

Application d'une force motrice faible : $T_{min} = 8 \ ^{\circ}\text{C}$

On mesure :

Vitesse de consommation des gaz : dp/dtà $t = t_1 + 0$, 10, 20, 30 min

Vitesse d'abattement du CO_2 : dy_{CO2}/dt

Essais cinétiques sur deux semi-clathrates

Essais sur les hydrates de TBAB et TBPB en présence de biogaz synthétique (40 % CO_2 / 60 % CH_4)

Les hydrates de TBAB entraînent une consommation de gaz plus rapide (~ 50 %) L'effet sur la variation de composition du mélange de gaz est moins net mais bien réel

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Essai d'additifs cinétiques

Eau + TBAB 10 % + biogaz synthétique

Trois additifs testés :

- SDS (sodium dodecyl sulfate)
- DTAB (dodecyltrimethylammonium bromide)
- CTAB (cetyltrimethylammonium bromide)

Journée thématique SFT 22/01/2016

Séparation de biogaz par cristallisation d'hydrates

Conclusion

- Une plus grande affinité de la phase hydrate pour le CO₂ est confirmée dans tous les cas, sauf pour les hydrates de TBPO
- L'exploitation de l'effet mémoire réduit le temps d'induction lors de la cristallisation sous faible force motrice
- Les additifs cinétiques testés semblent avoir peu d'influence
- Les hydrates de TBAB se forment plus rapidement, ou consomment le gaz plus rapidement, que les hydrates de TBPB

Références

Journal of Physical Chemistry B, 115 (2), 2011, 288-299.

Journal of Chemical Thermodynamics, 61, **2013**, 132-137.

Journal of Chemical and Engineering Data, 59(10), 2014, 3193-3204.

Journal of Chemical and Engineering Data, 60(2), 2015.

Fluid Phase Equilibria, **2015**, <10.1016/j.fluid.2015.09.042>

Remerciements

IDEX Paris Saclay

Air Liquide (Anne-Laure Lesort, Philippe Arpentinier, CRCD)

ECP (Moncef Stambouli, LGPM)