# Caractérisation d'une mémoire à changement de phase

# Mesure de propriétés thermiques de couches minces à haute température

#### Vincent Schick, Jean-Luc Battaglia, Andrzej Kusiak, Clément Rossignol, Claudia Wiemer, Andrea Cappella



Caractérisation thermo-physique et applications micro-électroniques





# Contexte général de l'étude

#### Mémoire non volatile semi-conducteur



# Comportement thermique d'une mémoire à changement de phase

Principe de fonctionnement

Matériaux à changement de phase

Structure des mémoires



Comportement thermique d'une mémoire

Mesure thermique de couches minces à haute température Radiométrie photothermique modulée Thermoréflectométrie pompe sonde Conclusion et perspectives Principe de fonctionnement Matériaux à changement de phase Structure des mémoires

#### Principe de fonctionnement



Journée SFT 18/11/2011

**Vincent Schick** 

Comportement thermique d'une mémoire

Mesure thermique de couches minces à haute température Radiométrie photothermique modulée Thermoréflectométrie pompe sonde Conclusion et perspectives

Principe de fonctionnement Matériaux à changement de phase Structure des mémoires

#### Matériaux à changement de phase

#### Alliage des systèmes Ge-Sb-Te

- Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST 225)
  - Amorphe jusqu'à 130°C
  - 130-300°C Cristallin Cubique Face Centré (cfc)
  - Au-delà de 300°C Cristallin Hexagonal (hcp)
  - Après 630°C Fusion



Fallica, R.; Battaglia, J.-L.; S.Cocco; Monguzzi, C.; Teren, A.; Wiemer, C.; Varesi, E. & Fanciulli, M. Journal of Chemical and Engineering Data, 2009, 54, 1969-1701

Comportement thermique d'une mémoire

Mesure thermique de couches minces à haute température Radiométrie photothermique modulée Thermoréflectométrie pompe sonde Conclusion et perspectives Principe de fonctionnement Matériaux à changement de phase Structure des mémoires

#### Structure des mémoires



- Dimensionnement thermique
  - Transfert thermique lié au chauffage par effet joule
  - Interaction thermique entre les cellules
- Simulation du comportement de la cellule
  - Électrique et thermique (multiphysique)
  - Connaissance des propriétés thermiques
    - Capacité thermique
    - Conductivité thermique
    - <u>Résistance thermique de contact RTC</u>



≈ RTC

Journée SFT 18/11/2011

#### **Vincent Schick**

# Mesure thermique de couches minces à haute température : Méthodologie

Démarche de l'étude

#### Choix de méthode de mesure : Échelle de temps

**Caractérisations Structurale et Chimique** 



Démarche de l'étude Choix de méthode de mesure : Échelle de temps Caractérisation Structurale et Chimique

#### Démarche de l'étude





- Conditions expérimentales reproduisant celles de mise en œuvre des PRAM
  - Températures de fonctionnement « solide » 25-400°C

- Couche mince (~100nm)
- Procédé de déposition

Démarche de l'étude Choix de méthode de mesure : Échelle de temps **Caractérisation Structurale et Chimique** 

#### Démarche de l'étude : méthode inverse

- Problématique expérimentale (mesure)
  - Choix du dispositif (adapté à la configuration des systèmes thermigues)
  - Haute température (20 400°C)
- Problématique théorique (modèle)
  - Transfert thermique aux micro et nano-échelles (~100 nm)
  - Modèle adapté aux dispositifs expérimentaux



Démarche de l'étude Choix de méthode de mesure : Échelle de temps Caractérisation Structurale et Chimique

#### Choix de méthode de mesure : Échelle de temps



Journée SFT 18/11/2011

**Vincent Schick** 

Démarche de l'étude Choix de méthode de mesure : Échelle de temps **Caractérisation Structurale et Chimique** 

#### **Caractérisation Structurale et Chimique**

Certification de la mesure (Avant/Après)

Haute température (20-400°C)

Accroît les cinétiques de réaction

(oxydation) Favorise la diffusion des espèces chimiques présentes dans les dépôts

Présence de matériaux « actifs » I

Modification de structures Modification de propriétés physiques

| Technique   | TOF-SIMS                                | Diffraction<br>Rayon X   | MEB               | AFM                | Ellipsométrie      |
|-------------|-----------------------------------------|--------------------------|-------------------|--------------------|--------------------|
| Mesure      | Profil de<br>concentration<br>d'espèces | Structure<br>cristalline | Imagerie<br>(~nm) | État de<br>surface | État<br>de surface |
| Laboratoire | MDM                                     | MDM                      | MDM et<br>TREFLE  | I2M<br>DUMAS       | MDM                |

Analyses recoupées entre elles et couplées aux mesures thermiques

Journée SFT 18/11/2011

# Mesure de propriétés thermiques par radiométrie photothermique modulée



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

#### Dispositif expérimental



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

#### Préparation des échantillons : transducteurs

- Absorption du flux de photons
  - Échelle micrométrique → prise en compte de la loi de Beer-Lambert
  - Importance de κ pour minimiser l'épaisseur d'absorption devant

$$\beta \approx \frac{4\pi\kappa}{\lambda} \quad << \ l \approx \sqrt{a\tau/\pi}$$

- épaisseur ~10 nm
- Choix : Métal évaporé thermiquement
  - Émission (Radiométrie)
    - Chrome, Platine
  - Réflexion
    - Aluminium ,Or
- Blocage du rayonnement non phonique
  - Matériau semi-transparent
  - Matériau semi-conducteur



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

### Modélisation de l'expérience

- Configuration expérimentale à trois couches
  - Transducteur Dépôt Substrat
- Symétrie axiale
- Résolution de l'équation de diffusion de la chaleur dans le domaine fréquentiel
  - Transformées intégrales (Laplace, Hankel)
  - Représentation par quadripôles
- Représentation de chaque couche par un réseau d'impédances
- Absorptions volumiques du flux de photons → terme source au nœud central du réseau





Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

#### Modélisation de l'expérience

- Substrat
  - Température imposée face arrière (*T*=0)
  - e<sub>s</sub>>>e<sub>d</sub>
- Dépôt
  - RTC dépôt/substrat et dépôt/transducteur
- Transducteur
  - Absorption optique terme source (3D)
  - Mince  $e << z_h$  et  $e \sim z_0$
  - Pertes thermiques par convection



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

#### Modélisation de l'expérience : Simplification



Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse

Mesure des RTC et des conductivités thermiques

Identification de  $R_{th}$  - mesure de phase (1 – 100kHz)

■ SiO<sub>2</sub> (25 – 500°C)

 Dépôts SAUSG (150 - 300nm)

Dépôts HDP

(50 - 300nm)

$$R_{th} = \frac{e_{SiO_2}}{k_{SiO_2}} + RTC$$

 k (W/m/K)

 SAUSG 25 °C
 1,26

 SAUSG 500 °C
 1,44

 HDP 25 °C
 1,67

 HDP 500 °C
 1,30

GST (50 – 400°C) Dépôts réalisés par pulvérisation cathodique DC  $R_{th} = \frac{e_{SiO_2}}{k_{SiO_2}} + \frac{e_{GST}}{k_{GST}} + RTC$ magnétron (100 - 840nm) Journal of Applied Physics, 107 (4), 2010, 8.E-06 - 50°C amorphe 70°C 90°C 130°C 3 interfaces 150°C 190°C 2 interfaces 200°C



Journée SFT 18/11/2011

**Vincent Schick** 

Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

### Résultats et analyse

- Identification de  $R_{th} \rightarrow$ 
  - k<sub>GST</sub> (W/m/K)

| amorphe | cfc     | hcp     |
|---------|---------|---------|
| 0,2     | 0,4-0,9 | 1,3-2,5 |

• RTC (Km<sup>2</sup>/W)

| amorphe             | cfc              | hcp              |  |
|---------------------|------------------|------------------|--|
| 5x 10 <sup>-8</sup> | 10 <sup>-8</sup> | 10 <sup>-7</sup> |  |

- TOF-SIMS MEB ellipsométrie
  - Légère diffusion de Te dans transducteur
  - Rugosité du film de platine (abîmé)



Température (°C)

Dispositif expérimental Préparation des échantillons Modélisation de l'expérience Résultats et analyse

### Résultats et analyse

 Ensemble de chauffage d'une mémoire à changement de phase

> Si//TiN(40)/*cfc*-GST(70)/Pt(30) Si//TiN(40)/Ti(4)/*cfc*-GST(70)/Pt(30) (Pulvérisation DC magnétron)

- Identification  $R_{th} = \frac{e_{TiN}}{k_{TiN}} + \frac{e_{GST}}{k_{GST}} + RTC$
- Résultats
  - Ti perturbe transition *cfc-hcp*
  - Mesure électrique : présence de Ti, améliore le contact électrique
  - Difficulté à discriminer k de RTC



**Dispositif expérimental** Préparation des échantillons Modélisation de l'expérience Résultats et analyse

> SiO<sub>2</sub>/GST 340°C TiN/GST 340°C

TIN

cfc-GST hcp-GST

#### Résultats et analyse

- Diffraction des rayons X
  - GST-hcp peu présent lors du recuit
  - Apparition de cristaux Ti-Te
- TOF SIMS
  - Ségrégation du tellure  $\rightarrow$  TiTe<sub>2</sub>



Intensité

# Mesure de propriétés thermiques par Thermoréflectométrie pompe sonde



#### **Principe**

**Dispositif expérimental** 

Modélisation de l'expérience

Résultats et analyse



Comportement thermique d'une mémoire Principe Mesure thermique de couches minces à haute température **Dispositif expérimental** Radiométrie photothermique modulée Modélisation de l'expérience Thermoreflectométrie pompe sonde Résultats et analyse Conclusion et perspectives

Principe



**GST/métal** 

**Vincent Schick** 

~ ns

#### Principe



t=0



#### Acoustique picoseconde



Journée SFT 18/11/2011

**Vincent Schick** 

24

t (~ps)

Principe **Dispositif expérimental** Modélisation de l'expérience Résultats et analyse

#### **Dispositif expérimental**



Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Modélisation de l'expérience



Journée SFT 18/11/2011

**Vincent Schick** 

Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

# Modélisation de l'expérience

- Grandeurs caractéristiques de l'expérience
  - Temps :100 fs 12,5 ns
  - Longueur caractéristique de diffusion de la chaleur : ~ 10 - 100 nm
  - Couche métallique

#### 🔶 Contact métal/GST

 Utilisation du modèle à deux températures (dépôts métalliques)





Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

# Modélisation de l'expérience

- Simulation 2T par éléments finis pour aluminium
  - Thermalisation du film d'Al entre 3 et 10 ps
  - z<sub>0</sub>= 20 nm (optique) et z<sub>h</sub>= 120 nm (thermique)

 Résolution de l'équation de diffusion de la chaleur possible (~ 10 ps)



Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Modélisation de l'expérience : simplification

- Temps trop courts pour l'établissement d'un régime de convection (ns)
- Dépôt à analyser semi infini  $e_d >> \sqrt{a\tau/\pi}$
- Transducteur Capacitif
  - Mince e<<  $z_h$  et e ~  $z_0$
  - Source d'excitation (quasi Dirac)
- Identification de RTC dépôt/transducteur







Journée SFT 18/11/2011

**Vincent Schick** 

Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse

- Identification de la résistance thermique de contact GST/AI
  - Si//SiO<sub>2</sub>(90)/α-GST(210)/Al(20)
  - Mesure en réflectométrie (0 - 6ns)
- Étude de la composante continue
  - Effet « d'accumulation » des impulsions pompe
  - Sensibilité de la composante continue aux propriétés thermiques du dépôt



Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse

- Résistance thermique de contact GST/AI
  - Amorphe : 10<sup>-8</sup>– 10<sup>-7</sup> Km<sup>2</sup>/ W
  - *cfc* 5 x10<sup>-7</sup> Km<sup>2</sup>/ W !!!!
  - *hcp* chute à 10<sup>-7</sup> Km<sup>2</sup>/ W
- Imagerie MEB et visible
  - Décollement global du film
  - Effondrement du film en hcp







Journée SFT 18/11/2011

Vincent Schick

Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse

- Phénomène acoustique aux temps courts
  - Résonance du film d'aluminium croissante avec le changement de phase
  - Modification des propriétés acoustiques
    - Décollement
    - Diffusion d'espèce
- Théorie
  - Si  $Z_{AL} < Z_{GST} F = V_1/2e_t \rightarrow F=80GHz$ Si  $Z \rightarrow Z = F=V_1/2e_t \rightarrow F=80GHz$
  - Si  $\mathbf{Z}_{AL}$ > $\mathbf{Z}_{GST}$  F= V<sub>I</sub>/4 $\mathbf{e}_{t}$   $\rightarrow$  F=160GHz

| Z <sub>AI</sub> | $\mathbf{Z}_{\alpha\text{-}GST}$ | Z <sub>fcc-GST</sub> | $Z_{hcp	ext{-}GST}$ |
|-----------------|----------------------------------|----------------------|---------------------|
| 17.3            | 13.3                             | 19.8                 | 21.1                |





Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse



Principe Dispositif expérimental Modélisation de l'expérience Résultats et analyse

#### Résultats et analyse



 La réflectivité acoustique R<sub>ac</sub> est proportionnelle au logarithme de la résistance thermique de contact GST/AI

# Conclusion et Perspectives



## **Conclusion et perspectives**

- Corrélation acoustique thermique
  - Nouvelle mesure acoustique
  - Étude de rugosité interface par AFM
- Étude de l'état liquide
  - Couche mince liquide
  - Thèse Andrea Cappella Trefle-LNE
- Étude de Si<sub>3</sub>N<sub>4</sub>
  - Remplacement de SiO<sub>2</sub>
  - Difficulté de mesure





I. Aubert - DUMAS