

Transferts thermiques dans le verre au cours du procédé de thermoformage

B. Le Corre^{1,2}, A. Collin¹, Y. Meshaka², G. Jeandel¹

1 – Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée (LEMTA, Nancy) 2 – Institut Jean Lamour (IJL, Nancy)

> Société Française de Thermique 6ème Journées d'Études en Rayonnement Thermique 10-11 Octobre 2012

Sommaire

- Contexte industriel
 - Définition du thermoformage
 - Problèmes de mise en forme
 - Développement d'un banc d'essais
 - Problématique / Objectifs
- Modélisation thermique
 - Solutions proposées pour la résolution numérique
 - Développement MMC
 - Validation numérique
- Étude d'un cas de thermoformage
 - Présentation du modèle thermique
 - Influence des paramètres
 - Cas thermomécanique
- Bilan des résultats
- Perspectives

Définition du thermoformage

→ Procédé qui consiste à chauffer une pièce de verre (généralement plat) afin d'abaisser sa viscosité et de lui faire épouser la forme d'un moule situé en-dessous.

<u>essai de thermoformage</u>

Pièces mises en forme par thermoformage:

• Pare-brise

(Groombridge et al. (2003), Development and implementation of visual feedback technology in automotive windscreen manufacture)

• Lentilles optiques

(Agnon et al. (2005), An inverse modelling technique for glass forming by gravity sagging)

• Pièces de décoration, mobilier, arts de la table (Beveridge et al. (2005), *Le verre – L'art et les techniques du travail au four*)

Problèmes de mise en forme

- Défauts observés sur certaines pièces thermoformées :
 - Épaisseurs non homogènes
 - Défauts de surface (marquage moule)
 - Ruptures
- Cause :

→ Artisanat : méthode d'essais-erreurs

Sommaire	Contexte	Modélisation the	ermique	Cas de thermoform	nage Bilan	des résultats	Perspectives
Déf. thermofrom	age Pb. de	mise en forme	Développeme	nt banc d'essais	Écart de ter	npérature	Problématique
Cer	fav		4		èmła /		UNIVERSITÉ DE LORRAINE

Développement d'un banc de mesures

Thèse de L. Soudre (2009)

→ Mesure des températures et des déplacements

Champ de déplacements

Sommaire	Contexte	Modélisation the	rmique Ca	as de thermoformage	e Bilan des résult	ats Perspectives
Déf. thermofromage	e Pb	. de mise en forme	Développement	banc d'essais	Écart de température	Problématique
Cerf	av		5	(Celen	ta J	

Mise en évidence d'un écart entre T_{consigne} et T_{mesurée}

Thèse de L. Soudre (2009)

Problématiques/Objectifs du projet

- <u>Problématique :</u> simuler numériquement le procédé de thermoformage
 - Mieux appréhender l'influence des paramètres (chargement thermique, moule, géométrie initiale) sur la géométrie finale de la pièce.
 - A long terme, déterminer par analyse inverse le chargement thermique optimal à imposer en intégrant les conditions opératoires.
- Objectifs :
 - Développer un code de calcul radiatif spécifique (MMC)
 - Implémenter les C.L. radiatives
 - Disposer d'un code de résolution de l'équation de la Chaleur
 - Coupler la mécanique avec la thermique

Sommaire	Contexte	Modélisation the	ermique C	as de thermoformag	ge Bilan des résulta	ts Perspectives
Déf. thermofroma	ige Pb	. de mise en forme	Développemen	t banc d'essais	Écart de température	Problématique
Cerf	Fav		7		nta J	UNIVERSITÉ DE LORRAINE

Résolution de l'équation de la Chaleur

<u>Bilan des échanges thermiques sur un élément de volume :</u>

- ✓ Conduction
- Rayonnement
- Pas de convection (on considère que le verre reste solide) X

 $\rho C_p \frac{dT}{dt} = div(\lambda \overline{grad(T)}) + S_r$ Méthode de Monte Carlo

Ouel code de résolution?

Solution EF2D

A un temps t_i donné :

\rightarrow Couplage thermique faible

Sommaire	Contexte	Modélisatior	thermique	Cas de	e thermofor	mage	Bilan des rés	ultats	Perspectives
Résolution éq. c	le la Chaleur	EF2D/VF2D	MMC	Tirages ale	éatoires	Validatio	n MMC	Validatio	n EF2D/VF2D
Cer	fav			9		èmla		-	

Solution VF2D

A un temps t_i donné :

Solution éléments finis 2D (EF2D)

\rightarrow Couplage thermique faible

Solution volumes finis 2D (VF2D)

\rightarrow Couplage thermique fort

Sommaire	Contexte	Modélisatio	n thermique	Cas de	e thermofo	rmage	Bilan des rés	ultats	Perspectives
Résolution éq. c	de la Chaleur	EF2D/VF2D	ММС	Tirages ale	éatoires	Validatio	n MMC	Validatio	on EF2D/VF2D
Cer	fav	ACTIVE INDOMALI OF A ROBIOR	R	10		emta		-	UNIVERSITÉ DE LORRAINE

Méthode de Monte Carlo directe

Maillage du domaine (2D) :

Hypothèses:

Verre : absorbant (et émettant), non diffusant

Milieu gris par bandes : ε_{λ} , κ_{λ} , n_{λ} constants sur une bande de longueurs d'onde (ou fréquences)

Réflexion spéculaire

T constante sur un élément

Sommaire	Contexte	Modélisatio	n thermique	Cas de	thermofor	mage	Bilan des rés	ultats	Perspectives
Résolution éq. c	le la Chaleur	EF2D/VF2D	MMC	Tirages alé	atoires	Validatio	on MMC	Validat	ion EF2D/VF2D
Cer	fav		2	11		emla		-	UNIVERSITÉ DE LORRAINE

Tirages aléatoires

Maillage 2D

Tirage aléatoire :

- Du point d'émission (x_e , y_e)
- De la direction (φ , θ)
- Transmission ou réflexion

Choix des autres paramètres :

- Nombre de quantas envoyés par élément : proportionnelle à la taille d'un élément.
- Énergie transportée par quantum : Q_{élem}/nb quanta
- Nombre de quanta envoyés sur une bande de longueurs d'onde : proportionnel à Q_{bande de longueurs d'onde}/Q_{totale}

Validation du code MMC

\rightarrow Échanges thermiques uniquement par rayonnement

(Feldheim (2002), Simulation numérique des transferts thermiques combinés conduction-convection-rayonnement dans des domaines de géométrie complexe)

Sommaire	Contexte	Modélisation	n thermique	Cas de	thermofo	rmage	Bilan des ré	sultats	Perspectives
Résolution éq. de	e la Chaleur	EF2D/VF2D	ММС	Tirages alé	atoires	Validatio	on MMC	Validati	ion EF2D/VF2D
Ceri	Fav		2	13		èmta		-	UNIVERSITÉ DE LORRAINE

Validation de EF2D et VF2D

\rightarrow Échanges thermiques par conduction et rayonnement

Sommaire	Contexte	Modélisatio	n thermique	Cas de	thermofo	rmage	Bilan des rés	ultats	Perspectives
Résolution éq.	de la Chaleur	EF2D/VF2D	MMC	Tirages alé	atoires	Validatio	n MMC	Validation	EF2D/VF2D
Cer	fav		2	14		emta		- (

Thermoformage – cas étudié

• Géométrie et propriétés du verre :

- 10 bandes de longueurs d'onde dans le domaine semi-transparent [0,25μm ; 5,25μm] (Rubin(1985),
 Optical properties of soda lime silica glasses for windows)
- Frontières opaques au-delà de 5,25µm

Déclinaison de VF2D en deux versions : VF2DS et VF2DW

Influence du nombre de quanta envoyés

Température moyenne dans la plaque de verre (VF2DS ; $\Delta t = 5s$)

 \rightarrow A partir de 2.10⁹ quanta/m² et 2.10⁶ quanta/m, il n'y a plus d'amélioration sensible de la précision lorsque l'on augmente le nombre de lancers.

Temps CPU de la	4.10 ⁸ quanta/m ²	2.10 ⁹ quanta/m ²	10 ¹⁰ quanta/m ²	5.10 ¹⁰ quanta/m ²
(PC - DELL T7500) :	2h	8h	1 jour et 18h	8 jours
Sommaire Contex	te Modélisation the	rmique Cas de thern	noformage Bilan des	s résultats Perspectives
Chargement thermique VF2	2DS et VF2DW Influence d	lu nombre de quanta Cor	nparaison couplage fort/fa	ible Cas thermomécanique
Cerfav		17	Cemta III	

Comparaison couplage fort / faible et variation

Comparaison couplage fort / faible et variation

Comparaison couplage fort / faible et variation At

- → Le couplage fort VF2DS est proche d'avoir convergé pour Δt = 5s
- Relativement à l'ordre de grandeur de la température, les écarts entre VF2DS, VF2DW et EF2D sont faibles en prenant Δt = 5s

Temps CPU de la	VF2DS (Δt = 5s)	VF2DS (Δt =10s)	VF2DW (Δt = 5s)	VF2DW (Δt = 10s)	EF2D (Δt = 5s)
simulation :	1 jour et 18h	1 jour	1 jour et 10h	17h	2 jours et 5h

Modèle élasto-visco-plastique

Bilan des résultats

- Développement de 2 codes pour résoudre la thermique :
 - Code EF2D intégré à Abaqus©.
 - Code VF2D pour la comparaison du couplage fort et du couplage faible.
- Dans un premier temps : déterminer le nombre de quanta à envoyer pour obtenir un rapport précision / temps de calcul satisfaisant.
- Les résultats des simulations montrent que le choix du couplage fort ou faible influe peu sur la précision des résultats dans notre cas.
- → Si le pas de temps choisi est suffisamment petit : le code EF2D offre une précision suffisante pour un pas de temps $\Delta t = 5s$.

Perspectives

Merci de votre attention

Profil de température dans la plaque de verre

Cerfav

emta

II IL

UNIVERSITÉ De lorraine

Coefficients pris sur chaque bande de longueurs d'onde

λ ₀ (μm)	n	k
[0,25 ; 0,75]	1,52	1,3926.10 ⁻⁷
[0,75 ; 1,25]	1,485	4,7746.10 ⁻⁶
[1,25 ;1,75]	1,463	3,9391.10 ⁻⁶
[1,75 ; 2,25]	1,447	4,1380.10 ⁻⁶
[2,25 ; 2,75]	1,428	5,9683.10 ⁻⁶
[2,75 ; 3,25]	1,41	7,1620.10 ⁻⁵
[3,25 ; 3,75]	1,395	1,058410 ⁻⁴
[3,75 ; 4,25]	1,375	9,8676.10 ⁻⁵
[4,25 ; 4,75]	2,352	2,8648.10 ⁻⁴
[4,75 ; 5,25]	1,324	2,9842.10 ⁻³

(Rubin (1985), Optical properties of soda lime silica glasses for windows)

