VERS L'OPTIMISATION DES PROPRIÉTÉS RADIATIVES ET GÉOMÉTRIQUES DES ABSORBEURS **SOLAIRES VOLUMIQUES EN MOUSSE DE SIC**

SÉBASTIEN MEY **CYRIL CALIOT GILLES FLAMANT**

TFE -2012

- **1. CONTEXTE & INTRODUCTION**
- **2.** RÉCEPTEURS VOLUMIQUES MODÈLE **1D**
- **3. ÉTUDES PARAMÉTRIQUES**
- 4. Expérience & Validation du modèle
- **5.** CONCLUSION & PERSPECTIVES

1. CONTEXTE & INTRODUCTION

2. RÉCEPTEURS VOLUMIQUES – MODÈLE 1D

3. ÉTUDES PARAMÉTRIQUES

4. Expérience & Validation du modèle

5. CONCLUSION & PERSPECTIVES

CONTEXTE

Projet OPTISOL (ANR-SEED)

<u>Coordinateur</u> : **Cyril CALIOT** (PROMES) <u>Partenaires</u> : CIRIMAT – LTN – **PROMES** – SICAT Sarl

1.

4

Tâche **1** : Optimisation numérique des propriétés volumiques d'absorbeurs Tâche **5** : Tests de structures d'absorbeurs solaires à haute température

de MARS à AOÛT 2012...

<u>Stage</u> : > Conception d'un homogénéisateur de flux (OPTISOL 5)

- > Développement d'un modèle 1D de récepteur volumique et études paramétriques (OPTISOL 1)
- + Préparation pour une thèse → Étude bibliographique

à partir de **JANVIER 2013**...

Thèse : Optimisation d'un récepteur volumique multicouche

INTRODUCTION (1)

Rendement de CARNOT

Plus la <u>température du fluide</u> de travail est <u>élevée</u>, plus le <u>rendement du cycle</u> thermodynamique sera <u>élevé</u>.

Récepteurs SURFACIQUES –vs– Récepteurs VOLUMIQUES

Utilisation des récepteurs <u>surfaciques</u> **limitée en température** (tenue thermomécanique, émission IR)

2.

Intérêt double pour les récepteurs <u>volumiques</u> (meilleure résistance & effet volumique)

INTRODUCTION (3)

2.

La SÉLECTIVITÉ VOLUMIQUE

1. CONTEXTE & INTRODUCTION

2. RÉCEPTEURS VOLUMIQUES - MODÈLE 1D

3. ÉTUDES PARAMÉTRIQUES

4. Expérience & Validation du modèle

5. CONCLUSION & PERSPECTIVES

LES RÉCEPTEURS VOLUMIQUES

9

MODÈLE 1D (1)

HYPOTHÈSES

Fluide

Gaz Parfait

2.

Solide

gris

Equations

- Fluide dilatable
 Optiquement
 Régime permanent établi
 - Énergie cinétique négligée
 Homogène
 - Effets visqueux négligés

Milieu poreux

- Mousse
- Optiquement épais

10

Écoulement CM : $v \downarrow D = m / A \rho \downarrow f$ QdM : $-\nabla P = m / A \phi^{\uparrow 2} \nabla v \downarrow D + \mu \downarrow f / K \downarrow 1$ $v \downarrow D + \rho \downarrow f / K \downarrow 2 v \downarrow D v \downarrow D$

MODÈLE MATHÉMATIQUE

Transferts de chaleur $F: \nabla \cdot (\rho \downarrow f C \downarrow f T \downarrow f v \downarrow D) = \nabla (k \downarrow f \uparrow \nabla T \downarrow f)$ $h \downarrow v (T \downarrow s - T \downarrow f)$ S: $0 = \nabla (k \downarrow s \uparrow * \nabla T \downarrow s) + h \downarrow v (T \downarrow f - T \downarrow s) - \nabla$ Rayonnement - Modèle P1 $-\nabla (1/3(\kappa + \sigma) \nabla G \downarrow s) = \kappa (4\sigma \downarrow SB)$ $T\downarrow s\uparrow 4 - G\downarrow s) + \sigma G\downarrow d$ $\nabla q r = \kappa (4\sigma \downarrow SB T \downarrow s \uparrow 4 - (G \downarrow s +$ $G \downarrow d$))

GÉOMÉTRIE – 1D

Modèle 1D (2)

MODÈLE DE PROPRIÉTÉS

- Conductivités thermiques effectives : $k {\not\!\!\!\!/} f {\not\!\!\!/} *$ et $k {\not\!\!\!\!\!\!/} s {\not\!\!\!/} *$
- Coefficient volumique d'échanges convectifs :
- hPerméabilité visqueuse : $K \downarrow 1$
- Perméabilité inertielle : $K \downarrow 2$
 - Coefficient d'absorption : $\kappa = 3/2 \alpha (1-\phi)/d$

Coefficient de diffusion : $\sigma = 3/2 (1-\alpha)$ $(1-\phi)/d$

WU et al. 2011

Coefficients valables pour certaines conditions d'utilisation.

CONDITIONS FRONTIÈRES

- Écoulement : (*P*↓*r*)↓*out* =0
- Température fluide : $(T \downarrow f) \downarrow in = T \downarrow amb \otimes (\nabla T \downarrow f) \downarrow out = 0$
- Température solide : $(\nabla T \downarrow s) \downarrow in = (\nabla T \downarrow s) \downarrow out = 0$
- Modèle P1 (Marshak) : $D \nabla G \downarrow s \cdot n = -G \downarrow s / 2$

WU, CALIOT, FLAMANT, and WANG 2011, Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers, Solar Energy 85 (2011), p. 2374-2385.

11

Modèle 1D (3)

DISCRÉTISATION DES ÉQUATIONS

- Méthodes des Volumes Finis et des Différences Finies
- Schéma amont (Upwind) pour les termes d'advection
- Schéma centré pour les termes de diffusion

2.

1^{er} **Ordre** → Algorithme de **THOMAS** (TDMA)

ORGANIGRAMME DE RÉSOLUTION

1. CONTEXTE & INTRODUCTION

2. RÉCEPTEURS VOLUMIQUES – MODÈLE 1D

3. ÉTUDES PARAMÉTRIQUES

4. Expérience & Validation du modèle

5. CONCLUSION & PERSPECTIVES

ÉTUDES PARAMÉTRIQUES (1)

INFLUENCES OBSERVÉES SUR...

> L'efficacité de conversion thermo-solaire $\eta \downarrow CTS = \Delta H \downarrow f / A \cdot \varphi \downarrow 0$

> La température de **sortie d'air** *T\f,out*

... DE QUATRE PARAMÈTRES

Le débit massique d'air $(m \in [0; 10], g/s) \rightarrow$ La porosité $(0, 70 \le \phi \le 0, 90)$ La conductivité thermique du solide >> Le diamètre de pores **massif** ($k \downarrow s \in \{1; 10; 100\} W/m/K$)

- $(1 \leq d \leq 2 mm)$

EFFET VOLUMIQUE : $T \downarrow s, in < T \downarrow f, out$

ÉTUDES PARAMÉTRIQUES (2)

GRANDEURS PHYSIQUES

- > Densité de flux incidente uniforme : $\varphi \downarrow 0 = 600 \ kW/m^2$;
- Température ambiante (référence) : *Tlamb* = 300 K;
- Pression atmosphérique (référence) : *P↓atm* =101 325 *Pa*;
- Diamètre et longueur du récepteur : L=D=5 cm;
- > Absorptivité du matériau solide massif : $\alpha = 0,95$.

PARAMÈTRES PAR DÉFAUT

- ➢ Porosité : *φ*=0,80 ;
- Diamètre de pores : d=1,5 mm;
- Conductivité thermique du matériau solide massif : kls=100 W/m/ K;
- > Débit massique de fluide : m = 1, 5 g/s.

15

CONDUCTIVITÉ THERMIQUE DU SOLIDE MASSIF

Profils de température : $T\downarrow s$ et

DIAMÈTRE DE PORES

Synthèse

Pour une augmentation des paramètres, voici les effets observés :

Paramètre	η↓CTS	T↓f,out	$\tau = \beta \cdot L$
m	7	Ы	10
k↓s	И	Ы	10
φ	7	7	5 à 15
d	7	7	7,5 à 15

MILIEU POREUX « IDÉAL »

- FAIBLE conductivité thermique
 - → matériau thermiquement isolant

GRANDE porosité

→ brins de solide fins

GRAND diamètre de pores

→ brins de solide espacés

Dans les limites de nos hypothèses τ↓min=3,75

21

1. CONTEXTE & INTRODUCTION

2. RÉCEPTEURS VOLUMIQUES – MODÈLE **1D**

3. ÉTUDES PARAMÉTRIQUES

4. Expérience & Validation du modèle

5. CONCLUSION & PERSPECTIVES

- **1. CONTEXTE & INTRODUCTION**
- **2.** Récepteurs volumiques modèle **1D**
- **3. ÉTUDES PARAMÉTRIQUES**
- 4. Expérience & Validation du modèle
- **5.** CONCLUSION & PERSPECTIVES

CONCLUSION & PERSPECTIVES

→ CONCLUSION : STAGE (ÉTÉ 2012)

- Étude bibliographique
- Dimensionnement d'un homogénéisateur de flux
 > En cours de fabrication
- Développement d'un modèle 1D de récepteur volumique
 Milieu poreux idéal : Thermiquement isolant
 Brins solide fins et espacés

→ PERSPECTIVES : THÈSE (JAN. 2013)

- Etude bibliographique : Transferts en milieux poreux Modèles de milieux effectifs
- - Compromis (*ŋ↓CTS*;*T↓f,out*) : Récepteurs multicouches
 Sélectivité volumique

25

6.

• Optimisation numérique des propriétés

MERCI DE VOTRE ATTENTION

