

UNIVERSITÉ *PROVENCE

F. Topin

E. Brun J.M. Hugo R.Occelli J. Vicente

Polytech'Marseille Dpt Mécanique Energétique Laboratoire IUSTI - CNRS- UMR 6595 Technopôle de Château-Gombert 5, Rue Enrico Fermi 13453 Marseille Cedex 13 – France

STAR

P*d***ytech***M***arsei***l***e**

Le matériau mousse

- nombreuses applications de la mousse dans le domaine des transferts
- milieu suffisamment modèle pour comprendre les phénomènes de transport

Structure cellulaire ouverte

- Fibreuse
- Quasi périodique
- Très ouverte (duale d'un empilement de bille)
- Modulable/contrôlable
 - taille des pores
 - épaisseur des brins
 - rugosité et la forme des brins (dépôt de surface)

- Impact fort sur les transferts
- •Caractérisation morphologique insuffisante
- •Peu de données et forte dispersion (écoulement, conductivité, échange de chaleur...)
- •Pas d'études en diphasique

Quelques exemples de mousses

NiCr foams – Recemat (10,20,30,40,50,100 ppi)

Ceramic foams

Sintered Polyethylene - Porvair

Trabecular bone

iMorph : Fonctionalités

Segmentation des phases: solide/ fluide **Reconstruction 3D** Tesselation de l'interface

Visualisation Porosité Surface spécifique Exportation vers les codes CFD

Extraction des éléments structurants Cellules

Réseau de brins

Porosimetrie Forme des pores

Orientations Connectivité Longueurs

Calculs Géodésiques

Plus courts chemins Tortuosité

Forme et orientation des cellules

Classification locale de formes

Analyse classique

- Dans la littérature le point de départ est l'obtention de squelettes
- Squelette filaire pas toujours représentatif (pyramide, plaque)

Identification des formes locales

- Identifier les voxels connexes à une certaine distance géodésique (Fast Marching)
- Matrice d'inertie du nuage de voxel obtenu
- Classification en objets élémentaires grâce aux moments d'inertie

En Bref

- Cells present ellipsoid shape
- Cells organization induces anisotropy
- Geometrical tortuosity depends on cells orientation and organisation
- Foams are homothetic

Structural dependencies

Sp = 3/dPore dThroat = 0.52 dPore <u>Strut length = 0.4</u> dPore

Réseaux Solide & Fluide (I)

Réseaux solide & fluide (II)

Conductivité thermique effective

$$\frac{1}{V}\int q(x)dV = -\mathbf{K}\frac{1}{V}\int \nabla T(x)dV$$

Pour les 3 directions : -Calcul des champs de température -Calcul des flux de chaleurs Obtention du tenseur de conductivité

$$\sum_{\substack{j \in Nodes \\ connected \ to \ p}} \Phi_{pj} = \sum_{\substack{j \in Nodes \\ connected \ to \ p}} -\frac{k_{pj}}{l_{pj}} S_{pj} \left(T_j - T_p\right) = 0$$

Validation

- Mesures expérimentales effectuées au laboratoire [Feto 04] sur les mousses de la base de données
- Résultats de 2 approches numériques :
 - Géométrie réelle
 - Maillage cubique (voxel binaire)
 - Polyédrique à partir de la surface triangulée

Validé par données expérimentales

orientation	(°)	-70	-25	0	25	70
kx (ksol=30)	(Wm ⁻¹ K ⁻¹)	0.66	0.61	0.60	0.65	0.70
ky (ksol=30)	(Wm ⁻¹ K ⁻¹)	0.64	0.70	0.70	0.66	0.61
kz (ksol=30)	$(Wm^{-1}K^{-1})$	0.88	0.84	0.84	0.84	0.85

kz : 0.83 ± 9%

Mesure méthode photothermique

Champ de température issus d'une simulation sur géométrie réelle avec star-ccm+

Impact de la porosité

- La conductivité thermique dépend de la porosité
- En donnant artificiellement la porosité du squelette AL20 on obtient la conductivité de l'AL10 ⇒ Pas d'influence de la taille de pore

Conuctivité directionnelle

Mesure de la conductivité dans des parallélépipèdes extraits pour une révolution de l'échantillon

- Pas de variations suivant z
- Variations sinusoïdales en opposition de phase pour x et y

Impact de la tortuosité

- Calcul tortuosité pour la révolution
- Dépendance linéaire entre tortuosité et conductivité thermique

>

 Même comportement pour toutes les mousses

Conductivité thermique en fonction de la tortuosité

Impact de la tortuosité

- Calcul tortuosité pour la révolution
- Dépendance linéaire entre tortuosité et conductivité thermique
- Même comportement pour toutes les mousses
- Pour une tortuosité donnée la conductivité est différente selon l'épaisseur

Conductivité thermique en fonction de la tortuosité

Influence de l'organisation des cellules

- Dans l'épaisseur le nombre de connections n'est pas le même que dans le plan image
- L'allongement et l'organisation des cellules expliquent ce phénomène
- À chaque connection le flux de chaleur se réparti entre les branches

Plus de connections --> plus de brins à même porosité La section des brins est plus faible pour le réseau présentant le plus fort nombre de connections /m

Nombre de conections vs tortuosité

Fluid phase :

Influence of fluid conductivity

Goal

Geometrical anisotropy of metal foam have already been established. Effective thermal conductivity tensor have been numerically estimated (network approach & "brute force" numerical simulation). For solid phase only For fluid phase only For fluid phases in local thermal equilibrium

- Les propriétés radiatives des milieux cellulaires sont en encore peu connues
- Peu de données expérimentales
- Peu de travaux numériques sur la géométrie réelle
- Algorithmes de lancer de rayons sont des algorithmes de propagation

Répartition d'énergie réfléchie et transmise

Physical Assumptions

Only specular reflection. fixed solid reflectivity (not depending on the incident ray direction).

•Simulations are carried on huge data volume representative of real porous sample.

Maillage (iMorph)

Mailleurs Commerciaux

Minimisent le nombre de mailles

- Calcul des intersections avec toutes les faces
- Trier les intersections par la distance au point de lancer

Maillage obtenu par Marching Cubes

- Chaque triangle est repéré dans un voxel.
- Un voxel ne contient qu'un nombre fini de triangles
- Plus grand nombre de mailles \Rightarrow besoin de plus de mémoire

Algorithme

Étapes

- Le maillage de surface est généré grâce à l'algorithme des marching cubes.
- Un faisceau de rayons est généré
- On lance les rayons les uns après les autres :
 - Le rayon avance de voxel en voxel
 - Pour chaque voxel rencontré on calcule les intersections avec les triangles contenus dans celui-ci
 - Si impact on génère un nouveau rayon selon le modèle physique utilisé

Modèle

- Réflexion spéculaire
- Réflectivité locale ne dépendant pas de l'angle d'incidence
- En faisant varier la réflectivité locale on obtient un spectre
- Par identification on trouve une réflectivité locale pour l'infra rouge comprise entre 0.75 et 0.9
- Un modèle plus riche peut être utilisé sans de grande augmentation du temps de calcul

Sample for Ray Tracing

Sample is a NiCr foam (3743 Recemat®). Dpore= 568µm. Geometry is fully characterized.

5 mm³ (~ 1000 pores) same thickness as experimental sample

Extinction coefficient

Spot diameter Influence

Fluctuation with a spot smaller than 3 pore

Spot diameter have to be large enough compare to pore diameter

Conclusion

A fast ray tracing algorithm. Simple assumptions (only specular reflection) give quantitative results. Some parameters (Spot diameter) have to be adjusted in regard to the porous structure to obtain accurate results.

Correlate geometrical properties to radiative ones

Radiative properties \rightarrow effective thermal conductivity model

In progress

Test algorithm on different porous media structure Diffusive reflection Monte Carlo Technique

Test Algorithm on semi-transparent materials : fluid phase absorptivity solid phase transmitivity

