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Context, motivation
Smoldering in 
porous media

Microscale simulations

Heat conduction
convection/diffusion
no radiation

≈1400K 
(measured)

Significant 
radiative 
transfers

• no long-range tranfers, exchanges only between 
neighboring grains 

we expect merely an additional 
equivalent conductivity 

True ? How much ?
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Reference situation

Reaction front

Heat source in grains 
currently burning

Continuous heat source in a 
single grain, within the packing

Parameters: 
• all set according to practical range
• Source power S [W]
• Background temperature T• [K]
• Grain size (R, = length unit)
• Solid thermal conductivity λs [W/mK]
• Bed porosity ε, effective conductivity  sceffc λλλ ~

, =

Oven at 
background 
temperature



Numerical model
Conduction:

• conducting solid, Laplace equation
• no convection nor conduction in the gas 
• time-explicit, finite-volume formulation
• discretization by a3 cubic volume elements (a = R/5)

Radiative transfers:

• transparent gas phase 
• opaque solid, black body
• the solid surfaces absorb all the incoming radiative flux
• the solid surfaces emit a flux with 

- an isotropic Lambert "cosθ" orientation distribution
- a rate given by Stefan-Boltzmann law E = σ T4 [W/m2] 

• Monte-Carlo simulation

Initial and boundary conditions:

• The bed is initially at background temperature T•
• External boundaries at constant background temperature T•
• Constant continuous heat supply S in the source

solid = conducting opaque black body    
gas = vacuum



Numerical simulations
Simulation management: quasi-continous time scheme

• radiated energy quantum: qr [J] 
set dynamically according to a cost/SNR compromise
(corresponding to at most δT = qr/ρcpa3 ≈ 10-3 ( TS – T• ) in a volume element)

• time step δt [s]
set dynamically so each surface element emits    a2 E δt  ≤  qr
(i.e. at most one quantum during δt)

• during a time step:
each surface element emits 0 or 1 quantum (with a probability a2 E δt  / qr )
each quantum propagates till it hits a solid surface where it is absorbed
the solid temperature is updated (-/+) in real time

• periodically, conduction is accounted for by an explicit finite-volume step

We monitor: 
• the source temperature TS
• the conductive and radiative and total outgoing fluxes

... until a steady regime is reached
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Numerical simulations
Example:

t (s)

Mean source 
temperature TS (K)

t (s)

Conduction

Radiation

Total
Outgoing 
fluxes (W)

S

δT = ½ K

δT = 
¼ K

δT ≈
1/8 K

In practice: 

- start with a coarse qr (fast), and then

- refine qr to improve SNR in steady state



T(r) - T•  in 3 cases with the same 
parameters: S=2.28W, T•  =700K

Phenomenology:

Reference case: 
conduction in plain solid

Source in a grain packing 
(conduction only)

Source in a grain packing 
(conduction + radiation)

180 K

1400 K

580 K



Phenomenology: Radial temperature distribution

T(r) - T•

r/R

Reference case: conduction in plain solid

Analytical solution in a spherical domain.

Here, r• is an apparent distance for the application of the boundary condition,

 the solution applies only up to some distance to the oven walls (r ≤  8R)
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T(r) - T•

r/R

Reference case: conduction in plain solid
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Source in a grain packing (conduction only)

180 K

1400 K

Poor thermal contact 
between the source 
and the packing 
 sharp drop

Behavior of an equivalent 
continuous material
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The fit applies far enough from the 
source and the oven walls (4R ≤  r ≤  8R) R/r = 8 R/r=4

Mean T(r)   
Fit

Phenomenology: Radial temperature distribution



T(r) - T•

r/R

Reference case: conduction in plain solid

Source in a grain packing (conduction only)

180 K

1400 K

580 K
Source in a grain packing (cond.+radiation)

Improved (radiative) transfer 
from the source to the packing 
 reduced temperature drop

( ) W/mK979.0,
11

4
=








−+=

∞
∞ s

s rr
S

TrT λ
πλ

( ) W/mK173.0,
,

,
11

4
=








−+=

∞
∞ effc

effc rr

S
TrT λ

πλ

( ) W/mK295.0,
11

4
=








−+=

∞
∞ eff

eff rr

S
TrT λ

πλ

By analogy, enhanced apparent conductivity 
(i.e. Rosseland approximation)

Phenomenology: Radial temperature distribution



Semi-local analysis

T• =   485 K

R =    1 mm, S = 20.5 W

R =    1 mm, S = 9.86 W

R =    3 mm, S = 20.5 W
R =    1 mm, S = 2.28 W

R = 1/3 mm, S = 0.25 W
R =    1 mm, S = 0.53 W
R =    1 mm, S = 0.25 W

R =     no radiation

T• =   700 K

T• = 1010 K

<T> = mean temperature in concentric spherical shells of thickness R/5

r/R

<T>
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Conduction
Radiative 
contribution



Semi-local analysis

R =    1 mm, S = 20.5 W

R =    1 mm, S = 9.86 W

R =    3 mm, S = 20.5 W
R =    1 mm, S = 2.28 W

R = 1/3 mm, S = 0.25 W
R =    1 mm, S = 0.53 W
R =    1 mm, S = 0.25 W

local effective conductivity in concentric spherical shells of thickness R/5

r/R

λeff
[W/mK]

r

T
rS eff d

d
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Conduction (plain solid)

Conduction (packing)
T• = 480, 700 or 1010 K



Semi-local analysis

R =    1 mm, S = 20.5 W

R =    1 mm, S = 9.86 W

R =    3 mm, S = 20.5 W
R =    1 mm, S = 2.28 W

R = 1/3 mm, S = 0.25 W
R =    1 mm, S = 0.53 W
R =    1 mm, S = 0.25 W

radiative contribution to the effective conductivity

r/R
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T• = 480, 700 or 1010 K
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Semi-local analysis
radiative contribution to the effective conductivity
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Why this form ?



Generalization: reconstructed media
lc =  2 lc =  3 lc =  4

ε = 0.25 

ε = 0.40 

ε = 0.60 

ε = 0.80 

Thresholded Gaussian fields:

porosity ε
correlation length lc

(and more ...)



Comparison  Packing / Reconstructed

181.0
~

=cλ

349.0
~

=cλ

Packing:    ε = 0.41 S=2.28 W T• = 700K 

Reconstructed:    ε = 0.40 S=2.28 W T• = 700K 

Better contact 
source/surrounding



Comparison     Without       /           With       radiation

S   =  2.28 W
T• =  700 K 

ε = 0.25 

ε = 0.50 

ε = 0.80 

ε = 0.25 

ε = 0.50 

ε = 0.80 

360 K

950 K

6200 K

320 K

500 K

570 K



Semi-local analysis
radiative contribution to the effective conductivity
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• Radiation may contribute significantly to heat transfers 
in the target applications.

• The homogenizable part of their contribution is well described in a wide range 
of structures and temperatures by Rosseland approximation, with

• This model involves only intrinsic dimensionless geometrical parameters:

conductivity coefficient , volumetric area  S , 

and a fairly constant shape factor ω

ω = 0.40 for unconsolidated grain packings

ω = 0.47 for consolidated reconstructed media (ε = 0.20~0.80)

• Further work is desirable 
- to catalogue ω for other structures (e.g., foams)
- to theoretically justify/improve the form of the heuristic formula
- to address semi-transparent solid materials

Conclusion
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Interpretation model: intrinsic formulation
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sreff σλλ

Conduction in 
the solid slab

Radiation in 
the void layer
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Not yet fully general: Sx is an ad-hoc volumetric area, for a transfer along x. 
Introduction of a shape factor ω , multiplied by the whole volumetric area,

Packing

Reconstructed
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