Alain DENOIRJEAN

Chargé de Recherche CNRS

Section 10 INSIS

UMR CNRS 6638

Dépôt par projection à plasma d'arc de poudres, suspensions, solutions

Architecture et propriétés fonctionnelles

DE CÉRAMIQUE INDUSTRIELLE

Différents procédés de projection thermique utilisés dans l'industrie

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

Introduction – Thermal Plasma Process

Flamme silico-alumineux

Plasma silico alumineux structure poreuse

Optimisation de la poudre

Composition spécifiquement mise Grains pré-densifiés à la flamme oxy-acétylénique au point par Imerys (propriétés physiques adaptées) flamme O₂-C₂H₂ 50 µm 50 µm ~ 20% de ~ 5% de porosité versité porosité COLE NATIONALE SUPÉRIEUR

DE CÉRAMIQUE INDUSTRIELI

Optimisation des paramètres de projection-structure typique des dépôts

Surfaces de dépôts pigmentés

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

Exemple de dépôts

Dépôt conventionnel

<u>10 µm</u>

TiO₂

R.F. plasma spraying

μm

Dépôt Nanostructuré

D.C. plasma spraying

DE CÉRAMIQUE INDUSTRIELLE

Which coating adhesion mechanism ?

Ra ~ 0,06 μm 0 MPa T < 100 C

Ra ~ 5 μ m (RT ~ 50) 20 MPa Mechanical T < 100 C

Ra ~ 5 μ m 55 MPa Mechanical + Interfacial ? T = 350 C

 $Ra < 1 \mu m > 55 MPa$ Interfacial – Mechanical? T = 350 C

Optimum preoxidation treatment

High pressure: $Pco_2 = 10^5 Pa$

Short exposition time: t < 15 min

High Temperature: T = 1000 C

Plasma preheating

]		
	Plasma gas	$\operatorname{Ar}/\operatorname{H}_{2}$
IR Pyrometer Preheating 1min 30 – 350 C	Gas flowrates (I/min)	45 / 15
torch	Arc current (A)	550
	Voltage (V)	52
Substrate	Stand off distances (mm)	100
	Preheating T (C)	350
• Courbe de consigne —2 Courbe experimentale	Carrier gas flowrate (I/min)	5,5
600 500 400 300 200 100 0	4	

Temps en s

400

600

200

()

ÉC

Interface role between alumina coating and oxidized substrate with wüstite layer bondcoat

Continuity of the cristal network

• physical-chimical adhesion

Preheating in furnace under CO₂ atmosphere

Adhesion (MPa)

Alumina splat on alumina layer deposited by PECVD

50 µm

Alumina splat morphologies on oxidized metallic substrates (APS)

Microstructure et nanostructure of alumina lamellae

Surface state in contact with

Alumina splat deposited by RF plasma troch under oxidized metallic substrate (APS)

Plasma-sprayed alumina coating on polished alumina substrate (APS)

Substrate	Microcrack network	Adhesion/Cohesion (MPa) <i>Ra<0.4 μm Ra~1.3 μm</i>		AFM picture 3 µm ∑
γ alumina Columnar microstructure		35 ± 3	40 ± 3	Φ _{col} = 100–150 nm
α alumina Columnar microstructure		3 ± 1	5 ± 1	Φ _{col} = 100–300 nm
α Granular microstructure		No adhesion of coating		$\Phi_{col} = 100-400 \text{ nm}$
Université de Limoges				2

ACP : relationship between film properties and splat morphologies (Alumina PECVD underlayer)

Coating properties and functionality

Cermet Fabrication Techniques

Pre-mixed Powder

Spray drying

En collaboration avec T. Chartier, D. Tetard, S. Chaulange

Yttria Stabilized Zirconia / NiCr

Cermet Fabrication Techniques

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

Multilayer coating with composition gradient

Finely structured coating: Particles gas transported

Multilayer coating by multi-process

Decreasing of open and interconnected porosity

tri-cathodes plasma torch (Triplex)

nano-agglomerated La_{0,8}Sr_{0,2}MnO₃ (Inframat)

specific surface = 2.94 m².g-1 (BET)

5.25 µm

21.26 µm

1.01 µm

nano-agglomerated $La_{0,8}Sr_{0,2}MnO_3$ coating elaboration strategy

DE CÉRAMIQUE INDUSTRIELLE

nozzle i.d.: 6.5 mm

Coating architecture: APS vs. SPS

pneumatic injection (secondary atomization)

- atomization by a secondary gas flow
- divergent jet of droplets
- plasma flow perturbation by atomizing gas

Suspension plasma spraying (SPS)

- mechanical injector (pressure)

calibrated diaphragm (• injector ~150 µm)

suspension stream (• _{stream} ~1.6 • _{injector})

heat flux > 20 MW.m⁻²

stream velocity function of plasma flow (from 20 to 30 m.s⁻¹)

plasma flow (different possible mixtures)

plasma torch mass enthalpy: from 8 to 14 MJ.kg⁻¹

sted with a trial version of R

~30 mm

Coating architecture: APS vs. SPS

APS

micrometer-sized

50 µm

SPS nanometer-sized d₅₀ ~ 50 nm

- 50 μm

38

coating architecture

YSZ nano-sized particles with agglomerates and aggregates

coating architecture

a peculiar coating structure

the higher T, the higher the stacking defect density in the coating

coating manufacturing mechanisms

some effects of operating parameters

43

coating architecture

- compared to APS coatings, SPS ones exhibit higher toughness (4-7 times)
 - superior abrasive wear resistance
 - very difficult to polish

Typical void size distribution (USAXS)

COLE NATIONALE SUPÉRIEURI

porosity measurement 25 F4-MB SPCTS type Ar-He Ar-He Ar-He 20 15 total

Void average sizes (USAXS)

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

NATIONAL LABORATORY

Void average sizes (USAXS)

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE bigger voids ↓ stacking defects

if defect >> d₅₀ ↓

stacking defect develops through the coating thickness and amplifies

YSZ thermal barrier coatings (TBCs)

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

50

friction coefficient vs sliding distance

Electrolyte Y-PSZ

interface substrat / électrolyte

Ar: 30 L/min He: 30 L/min I: 600 A h: 11,5 MJ.kg⁻¹

TriplexPro 200 torch

Conventional

SPCTS torch

Ar: 50 L/min He: 10 L/min I: 300 A h: 11.5 MJ.kg⁻¹ D: 40 mm D_{nozzle}: 9 mm **Pos: 2**

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnement" de de la SFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre

liquid precursor plasma spraying (SPPS)

SPPS: solution (torch F4)

SPPS: layer architecture (torch F4)

SPPS: nickel oxidation state

 higher distance of reoxidation of Ni under Ar / H₂ plasma flow
 does oxidation occurs in-flight or once material deposited?

Enthalpy •

solution layer architectures (YSZ)

cracks \rightarrow unpyrolized drops reheated by plasma heat flux

concluding remarks

coating architecture

1 µm

coating architecture

Gradient de porosité «nanostructuré »

Multicouche « nanostructuré »

composite « nanostructuré »

50µm

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnement" de de la SFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre

Organisation structurale multiéchelle des matériaux Resp. : philippe.thomas@unilim.fr

Procédé Injection jet d'encre céramique

SPCTS

Procédés Céramiques Resp. : fabrice.ros signol@unilim.fr Procédés de traitements de surface Resp. : alain.de noirjean@unilim.fr Procédé LECBD

JE VOUS REMERCIE POUR VOTRE & TTENTION

Je remercie également pour leur contribution aux résultats exposés

Stéphane valette	Elodie Brousse
Ghislain Montavon	Antoine Bacciochin
Pierre Fauchais	Fadel Ben Etouil
Pierre Lefort	Manon Nuzzo
Hélène Ageorges	Olivier Tingot
Alain Grimaud	Thibault Haure
Jean François Coudert	
Vincent Rat	

Pascal Tristant

Nicolas Lory

Quelques exemples de notre activité

1 - Les procédés céramiques

Matériaux de hautes performances

f_rossignol@ensci.fr

 Systèmes céramiques à microstructures et architectures contrôlées
 Nouveaux procédés d'élaboration

Journée du 22 Luvier 2010 du groupe "Modes de Transfort : Rayonnement" de de la SFT : Design de motériaux à propriétés radiatives fonctionnali MATERIAUX DE NAUTES PERTORNAMES

Hautes températures / Milieux agressifs - Synthèse de nanopoudres (Si/C/N/O/Y/Al) par spray-pyrolyse à partir de précurseurs - Frittage SiC (B₄C), ZrC(ZrB₂) - Synthèse de poudres fines par SHS Biocéramiques Synthèse d'apatites phosphocalciques (HAP-TCP)

Semiperméabilité

Synthèse d'apatites ($La_9Sr_1Si_6O_{26,5}$) conducteurs ioniques

Optique / électro-optique Matériaux polycristallins transparents

Mécanismes de frittage en vue de la maîtrise des microstructures (carbure, nitrure, borures, composites...) et de l'amélioration des propriétés

Journée du 22 Janvier 2010 du grompe "Modes de Transfert : Rayonnemert" de Le la SFT : Design de matériaux à propriétés - adiatives fonctionnalisées : de l'angström au millimètre MISE ENTOPHIE - MECANISMES TONAAMENTAUX

Interactions entre particules en suspension

Modélisation (dynamique Brownienne) et caractérisation de la structure 3D de suspensions (cryo-FEG)

Rhéologie

Compréhension et modélisation du comportement à l'écoulement de systèmes céramiques/auxiliaires de mise en forme

69

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnemert" de de la SFT : Design de matériaux à propriétés cadiatives fonctionnalisées : de l'angström au millimètre

MISE EN FORME - MECANISMES FONDAMENTAUX

Procédés classiques

Injection, extrusion, pressage, coulage en bande, dépôt électrophorétique, déliantage

Journée du 22 Janvier 2010 de groupe "Modes de Transfert : Rayonnement" de de LASFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre Design (MICCOSTICUCTUCE/ACCINTECTUCE) / Proprietes

Systèmes multicouches et multimatériaux

Elaboration de matériaux à gradients de propriétés (coulage en bande, HP, HIP) SOFC, CMR, composites lamellaires...

Méthodes numériques

Stéréolithographie (structurales)

Impression jet-d'encre

Microcomposants multifonctionnels Microsystèmes (capteurs, actionneurs...)

 $\begin{array}{l} \eta, \mbox{Viscosit}\acute{e}, \ \gamma, \mbox{Tension de} \\ \mbox{surface}, \\ r, \mbox{Diamètre de la buse} \\ \rho, \mbox{Densit}\acute{e} \end{array}$

Structures biocéramiques à gradients de porosité

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnement" de de la SFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre

Quelques exemples de notre activité 3. L'organisation structurale multiéchelle des matériaux

philippe.thomas@unilim.fr

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnement" de de la SFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre

verres et materiaux a base de 1eU2

Elaboration et étude structurale de matériaux pour l'optique non-linéaire (doublement de fréquence, remplacement de la silice : vitesse x 50)

Développement de nouvelles phases cristallines ou amorphes

Etude des corrélations entre la structure et la réponse en optique non-linéaire

Prédiction des propriétés diélectriques par calculs *ab initio* à partir des modèles structuraux

Spectres Raman de verres dans le système $x Tl_2O - (100-x) TeO_2$

Spectres expérimental et modélisé de diffusion Raman. Représentation de la structure de $TeO_2 \gamma$

- Relation structure/propriétés piézoélectriques
- Etude structurale des transitions de phase

20 C

550

750 C

880 C

Ferroelectrique

BT

NBT

Journée du 22 Janvier 2010 c'a proupe 'Modes de Transfert : Rayonnement' de c'e la SFT : Design de matériaux à propriétés radiatives fonctionne li écs : de l'angström au millimètre

rrecurseurs a oxyde nanocristallises

Elaboration par voie sol-gel

Etude de la transition sol-gel, des mécanismes d'agrégation et des structures fractales qui en résultent (diffusion centrale des rayons X)

Etude des mécanismes d'agrégation durant la transition sol-gel dans des sols précurseurs d'oxyde de tellure

Elaboration de matériaux massifs nanostructurés par séparation de phase (diffusion centrale et diffraction des rayons X)

Formation de nanocristaux de zircone dans une matrice amorphe de silice Le mécanisme de séparation de phase induit une distribution non-aléatoire de la position des cristaux de zircone

Journée du 22 Janvier 2010 du groupe "Modes de "- unsfert : Rayc nnement" de de la SFT : Design de matériaux à propriétés radiati es fonctionnalisées : de l'angström au millimètre

couches minces a oxyae

Elaboration par voie sol-gel de couches épitaixées

Croissance granulaire et démouillage

Croissance auto-organisée sur des surfaces vicinales

Analyse quantitative de la microstructure par diffraction des rayons X

Journée du 22 Janvier 2010 du groupe "Modes de Transfert : Rayonnement" de de la SFT : Design de matériaux à propriétés radiatives fonctionnalisées : de l'angström au millimètre

Quelques exemples de notre activité

2. Les procédés de traitements de surface

alain.denoirjean@unilim.fr

Low pressure plasma processes

Laser ablation (Pulsed Laser Deposition) CVD (plasma, laser, microwaves-enhanced)

Thickness: Å - a few µm

Diagnostics *in situ* (plasma, nature and velocity of reactive species...) Reactional processes Characterisation of microstructures (AFM, MFM, TEM...) Evaluation of useful properties (optic, electric, mechanic)

Domains of micro- and nanotechnologies

Microelectronic, optoelectronic, friction/wear (dry, high temperatures) Functionally graded layers, diffusion barriers

