
Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Near-field radiative heat transfer between a
nanoparticle and a rough surface

Svend-Age Biehs

Design de matériaux à propriété radiatives fonctionalisées:
de l’angstrom au millimètre

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Introducing the dipole model

Dipole model - LDOS
I for λth � R and d � R:
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Energy transfer rate within dipole model
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Definining a rough surface

Stochastic surface profile

I gaussian profile S(x)

〈S̃(κ)〉 = 0,

〈S̃(κ)S̃(κ′)〉 = (2π)2δ(κ + κ′)δ2g(κ)

I power spectrum

g(κ) = πa2e−
κ2a2

4

I root mean square (rms) δ,
correlation length a

x

z

S(x)
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Second-order perturbation theory

Mean LDOS above a rough surface
I ensemble average

〈D(0)−(2)(ω,d)〉 = D(0) + 〈D(1)〉+ 〈D(2)〉

I reflection coefficient

〈r (0)−(2)
p 〉 = r (0)

p (κ) + r (2)
p (κa)

I main contribution for κ ≈ d−1

I 3 regimes for r (2)
p :

I κa� 1, (a� d)
I κa� 1, (a� d)
I κa ≈ 1 , (a ≈ d)
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Large distance regime

Large distance approximation (LDA), d � a

I approximating r (2)
p for 1� κa

I r (2)
p ∝ δ2

a , (a� ds)
I effective layer (Maradudin and

Rahman)
I 〈D(2)〉, 〈P(2)〉 ∝ δ2

a

0.5 (   + 1)ε

ε

d
deff

= δ
aL
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Small distance regime

Proximity approximation (PA), d � a

I approximating r (2)
p for 1� κa

I
r (2)
p

r (0)
p
≈ 2(κδ)2 ⇒ ∆D = 〈D(2)〉

D(0) ≈ 6 δ2

d2

I
〈D(2)〉
D(0) ,

〈P(2)〉
P(0) > 0, do not depend on a, ε, T

I PA for δ � d � a
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Small distance regime

Proximity approximation (PA), d � a
I approximating r (2)
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Intermediate distance regime

Intermediate distances d ≈ a (κa ≈ 1)
I Im(r (2)

p )/Im(r (0)
p ) for SiC and ωt ≤ ω ≤ ωl

I a = 200 nm, δ = 5nm→ δ
a = 0.025
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Resulting distance dependence

Distance dependence of LDOS
I ∆D = D(2)

D(0) ; a = 200 nm, δ = 5nm→ δ
a = 0.025
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Roughness induced correction

Distance dependence of heat transfer rate
I ∆P = P(2)

P(0) ; δ = 5nm
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Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2
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I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Summary

Summary
I ∆P and ∆D non-monotonous (ev. modes)

I d � a:

∆D,∆P ≈ 6
δ2

d2

I coincides with PA
I independent of a, ε, T

I d � a (LDA):

∆D,∆P ∝ δ2

a

I effective layer
I intermediate: ∆P,∆D negative due to SPhP

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Dipole Model Roughness Distance regimes LDOS Heat transfer rate Summary

Merci pour votre attention !!!
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Perturbation theory Prop. modes Evanescent s-polarized modes NSThM

Perturbation theory

Direct perturbation theory

I plane-wave representation
of Ei,Er and Et

I bc via extinction theorem
(Rayleigh hypothesis)

I expand with respect to
S(x)

I determine Green’s dyadic
up to second order

I calculate LDOS
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s- and p-polarized modes

Propagating modes

I Im(r (2)
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coupling of s-polarized modes to SPhP

Coupling of prop. modes to SPhP
I s-polarized wave with E in y-direction and κi

kx

ky

1

2

i

sp

κ

κ

k0

0

-0.2

-0.4

κ / k0

ω
 / 

10
14

 s
-1

10.750.50.250

1.5

1.6

1.7

1.8

(a)

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau



Perturbation theory Prop. modes Evanescent s-polarized modes NSThM

s-polarized modes

Evanescent modes
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Near-field Scanning Thermal Microscope

(a) (b)

1.3 3.3

50nm

1.0 3.5

50nm(a) (b)

Near-field radiative heat transfer between a nanoparticle and a rough surface LCFIO, Palaiseau


	Dipole Model
	Introducing the dipole model
	Energy transfer rate within dipole model

	Roughness
	Definining a rough surface
	Second-order perturbation theory

	Distance regimes
	Large distance regime
	Small distance regime
	Intermediate distance regime

	LDOS
	Resulting distance dependence

	Heat transfer rate
	Roughness induced correction

	Summary
	Summary
	

	Anhang
	Perturbation theory
	Perturbation theory

	Prop. modes
	s- and p-polarized modes
	coupling of s-polarized modes to SPhP

	Evanescent s-polarized modes
	s-polarized modes

	NSThM
	Near-field Scanning Thermal Microscope



