Near-field radiative heat transfer between a nanoparticle and a rough surface

Svend-Age Biehs

Design de matériaux à propriété radiatives fonctionalisées: de l'angstrom au millimètre

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole model - LDOS

• for $\lambda_{\text{th}} \gg R$ and $d \gg R$:

$$\boldsymbol{P}^{\mathrm{B}\to\mathrm{P}} = \int_0^\infty \mathrm{d}\omega \, 2\omega \alpha''(\omega) \Theta(\omega, T_\mathrm{B}) \boldsymbol{D}(\omega, \mathbf{r}_\mathrm{P})$$

polarizability

$$\alpha = 4\pi R^3 \frac{\epsilon_{\rm P} - 1}{\epsilon_{\rm P} + 2}$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole model - LDOS

• for $\lambda_{\text{th}} \gg R$ and $d \gg R$:

$$\boldsymbol{\mathcal{P}}^{\mathrm{B} \to \mathrm{P}} = \int_{0}^{\infty} \mathrm{d}\omega \, 2\omega \alpha''(\omega) \Theta(\omega, T_{\mathrm{B}}) \boldsymbol{\mathcal{D}}(\omega, \mathbf{r}_{\mathrm{P}})$$

polarizability

$$\alpha = 4\pi R^3 \frac{\epsilon_{\rm P} - 1}{\epsilon_{\rm P} + 2}$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole model - LDOS

• for $\lambda_{\text{th}} \gg R$ and $d \gg R$:

$$\boldsymbol{P}^{\mathrm{B}\to\mathrm{P}} = \int_0^\infty \mathrm{d}\omega \, 2\omega \alpha''(\omega) \Theta(\omega, \mathbf{T}_{\mathrm{B}}) \boldsymbol{D}(\omega, \mathbf{r}_{\mathrm{P}})$$

mean energy of oscillator T_B

$$\Theta(\omega, T_{\rm B}) = \frac{\hbar\omega}{e^{\hbar\omega/(k_{\rm B}T)} + 1}$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole model - LDOS

• for $\lambda_{\text{th}} \gg R$ and $d \gg R$:

$$\boldsymbol{P}^{\mathrm{B}\to\mathrm{P}} = \int_0^\infty \mathrm{d}\omega \, 2\omega \alpha''(\omega) \Theta(\omega, T_\mathrm{B}) \boldsymbol{D}(\omega, \mathbf{r}_\mathrm{P})$$

Local density of states (LDOS)

$$D(\omega, \mathbf{r}_{\mathrm{P}}) = \frac{\omega}{\pi c^2} \mathrm{Im} \, \mathrm{Tr} \, \mathrm{G}(\mathbf{r}_{\mathrm{P}}, \mathbf{r}_{\mathrm{P}})$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
•	0	0 0 0	0	0	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0	0	0	0
		0			

Definining a rough surface

Stochastic surface profile

• gaussian profile $S(\mathbf{x})$

$$egin{aligned} &\langle \hat{S}(\kappa)
angle = 0,\ &\langle ilde{S}(\kappa) ilde{S}(\kappa')
angle = (2\pi)^2\delta(\kappa+\kappa')\delta^2g(\kappa) \end{aligned}$$

power spectrum

$$g(\kappa) = \pi a^2 \mathrm{e}^{-\frac{\kappa^2 a^2}{4}}$$

 root mean square (rms) δ, correlation length a

S(x)

x

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0	0	0	0
		0			

Definining a rough surface

Stochastic surface profile

• gaussian profile $S(\mathbf{x})$

$$egin{aligned} &\langle ilde{S}(\kappa)
angle = 0,\ &\langle ilde{S}(\kappa) ilde{S}(\kappa')
angle = (2\pi)^2\delta(\kappa+\kappa')\delta^2g(\kappa) \end{aligned}$$

power spectrum

$$g(\kappa) = \pi a^2 \mathrm{e}^{-\frac{\kappa^2 a^2}{4}}$$

 root mean square (rms) δ, correlation length a S(x)

x

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	0	0

Definining a rough surface

Stochastic surface profile

• gaussian profile $S(\mathbf{x})$

$$egin{aligned} &\langle ilde{S}(\kappa)
angle = 0,\ &\langle ilde{S}(\kappa) ilde{S}(\kappa')
angle = (2\pi)^2\delta(\kappa+\kappa')\delta^2g(\kappa) \end{aligned}$$

power spectrum

$$g(\kappa) = \pi a^2 \mathrm{e}^{-\frac{\kappa^2 a^2}{4}}$$

 root mean square (rms) δ, correlation length a

S(x)

x

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average

$$\langle D^{(0)-(2)}(\omega,d) \rangle = D^{(0)} + \langle D^{(1)} \rangle + \langle D^{(2)} \rangle$$

reflection coefficient

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - $\kappa a \ll 1$, $(a \ll d)$
 - \blacktriangleright $\kappa a \gg 1$, $(a \gg d)$
 - $\blacktriangleright \kappa a \approx 1$, $(a \approx d)$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average

$$\langle D^{(0)-(2)}(\omega,d)
angle = D^{(0)} + \langle D^{(2)}
angle$$

reflection coefficient

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - $\kappa a \ll 1$, $(a \ll d)$
 - \blacktriangleright $\kappa a \gg 1$, $(a \gg d)$
 - \blacktriangleright $\kappa a \approx 1$, $(a \approx d)$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \mathrm{Im}(\langle r_{\mathrm{p}}^{(0)-(2)} \rangle)$$

reflection coefficient

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - \blacktriangleright $\kappa a \ll 1$, $(a \ll d)$
 - \blacktriangleright $\kappa a \gg 1$, $(a \gg d)$
 - \blacktriangleright $\kappa a \approx 1$, ($a \approx d$)

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \mathrm{Im}(\langle r_{\mathrm{p}}^{(0)-(2)} \rangle)$$

reflection coefficient

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - $\blacktriangleright \kappa a \ll 1, (a \ll d)$
 - $\kappa a \gg 1$, ($a \gg d$
 - \blacktriangleright $\kappa a \approx 1$, $(a \approx d)$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty \mathrm{d}\kappa \, \frac{\kappa^2 \mathrm{e}^{-2\kappa d}}{4} \mathrm{Im}(\langle r_\mathrm{p}^{(0)-(2)} \rangle)$$

reflection coefficient

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

main contribution for κ ≈ d⁻¹
 3 regimes for r_p⁽²⁾:
 κa ≪ 1, (a ≪ d)
 κa ≈ 1, (a ≈ d)

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \operatorname{Im}(\langle r_{\rm p}^{(0)-(2)} \rangle)$$

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - *κ*a ≪ 1, (a ≪ d)
 - $\blacktriangleright \kappa a \gg 1, (a \gg d)$
 - $\kappa a \approx 1$, $(a \approx d)$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \operatorname{Im}(\langle r_{\rm p}^{(0)-(2)} \rangle)$$

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - κa ≪ 1, (a ≪ d)
 - $\kappa a \gg 1$, $(a \gg d)$
 - $\kappa a \approx 1$, $(a \approx d)$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \operatorname{Im}(\langle r_{\rm p}^{(0)-(2)} \rangle)$$

$$\langle r_{\rm p}^{(0)-(2)} \rangle = r_{\rm p}^{(0)}(\kappa) + r_{\rm p}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - κa ≪ 1, (a ≪ d)
 - κa ≫ 1, (a ≫ d)
 - $\kappa a \approx 1$, $(a \approx d)$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	•	0 0 0	0	0	0

Mean LDOS above a rough surface

ensemble average (ev. modes)

$$\langle D^{(0)-(2)}(\omega, d) \rangle \approx \int_0^\infty d\kappa \, \frac{\kappa^2 e^{-2\kappa d}}{4} \operatorname{Im}(\langle r_{\rm p}^{(0)-(2)} \rangle)$$

$$\langle r_{\mathrm{p}}^{(0)-(2)} \rangle = r_{\mathrm{p}}^{(0)}(\kappa) + r_{\mathrm{p}}^{(2)}(\kappa a)$$

- main contribution for $\kappa \approx d^{-1}$
- ▶ 3 regimes for $r_p^{(2)}$:
 - κa ≪ 1, (a ≪ d)
 - κa ≫ 1, (a ≫ d)
 - κa≈1, (a≈d)

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	• • •	0	0	0

Large distance approximation (LDA), $d \gg a$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0		0	0	0

Large distance approximation (LDA), $d \gg a$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	• • •	0	0	0

Large distance approximation (LDA), $d \gg a$

• approximating
$$r_p^{(2)}$$
 for $1 \gg \kappa a$

$$\bullet \ r_{\rm p}^{(2)} \propto \frac{\delta^2}{a}, \, (a \ll d_{\rm s})$$

 $\blacktriangleright \langle D^{(2)} \rangle, \langle P^{(2)} \rangle \propto \frac{\delta^2}{2}$

 effective layer (Maradudin and Rahman)

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	• • •	0	0	0

Large distance approximation (LDA), $d \gg a$

• approximating
$$r_p^{(2)}$$
 for $1 \gg \kappa a$

•
$$r_{\rm p}^{(2)} \propto \frac{\delta^2}{a}, (a \ll d_{\rm s})$$

 effective layer (Maradudin and Rahman)

•
$$\langle D^{(2)} \rangle, \langle P^{(2)} \rangle \propto rac{\delta^2}{a}$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 • 0	0	0	0

Proximity approximation (PA), $d \ll a$

• approximating $r_{\rm p}^{(2)}$ for $1 \ll \kappa a$

 $\begin{array}{l} \bullet \ \frac{r_p^{(2)}}{r_p^{(0)}} \approx 2(\kappa\delta)^2 \ \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^2}{d^2} \\ \bullet \ \frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0, \text{ do not depend on } a, \epsilon, T \end{array}$

 \blacktriangleright PA for $\delta \ll d \ll a$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 • 0	0	0	0

Proximity approximation (PA), $d \ll a$

► approximating
$$r_{p}^{(2)}$$
 for $1 \ll \kappa a$
► $\frac{r_{p}^{(2)}}{r_{p}^{(0)}} \approx 2(\kappa\delta)^{2} \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^{2}}{d^{2}}$
► $\frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0$, do not depend on a, ϵ, γ
► PA for $\delta \ll d \ll a$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 • 0	0	0	0

Proximity approximation (PA), $d \ll a$

► approximating
$$r_p^{(2)}$$
 for $1 \ll \kappa a$
► $\frac{r_p^{(2)}}{r_p^{(0)}} \approx 2(\kappa\delta)^2 \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^2}{d^2}$
► $\frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0$, do not depend on $a, \epsilon, 7$
► PA for $\delta \ll d \ll a$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 • 0	0	0	0

Proximity approximation (PA), $d \ll a$

► approximating
$$r_p^{(2)}$$
 for $1 \ll \kappa a$
► $\frac{r_p^{(2)}}{r_p^{(0)}} \approx 2(\kappa\delta)^2 \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^2}{d^2}$
► $\frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0$, do not depend on a, ϵ, T
► PA for $\delta \ll d \ll a$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 • 0	0	0	0

Proximity approximation (PA), $d \ll a$

► approximating
$$r_p^{(2)}$$
 for $1 \ll \kappa a$
► $\frac{r_p^{(2)}}{r_p^{(0)}} \approx 2(\kappa\delta)^2 \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^2}{d^2}$
► $\frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0$, do not depend on a, ϵ, T
► PA for $\delta \ll d \ll a$

$$\langle D(d)
angle pprox \langle D^{(0)}(d-S(\mathbf{x}))
angle$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	○ ● ○	0	0	0

Proximity approximation (PA), $d \ll a$

• approximating
$$r_p^{(2)}$$
 for $1 \ll \kappa a$
• $\frac{r_p^{(2)}}{r_p^{(0)}} \approx 2(\kappa\delta)^2 \Rightarrow \Delta D = \frac{\langle D^{(2)} \rangle}{D^{(0)}} \approx 6\frac{\delta^2}{d^2}$
• $\frac{\langle D^{(2)} \rangle}{D^{(0)}}, \frac{\langle P^{(2)} \rangle}{P^{(0)}} > 0$, do not depend on a, ϵ, T
• PA for $\delta \ll d \ll a$

$$egin{aligned} &\langle \mathcal{D}(d)
angle &pprox \langle \mathcal{D}^{(0)}(d-\mathcal{S}(\mathbf{x}))
angle \ &pprox \mathcal{D}^{(0)}(d) + 6 rac{\delta^2}{d^2} \mathcal{D}^{(0)}(d) + \dots \end{aligned}$$

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 0 •	0	0	0

Intermediate distance regime

Intermediate distances $d \approx a$ ($\kappa a \approx 1$) \blacktriangleright Im($r_p^{(2)}$)/Im($r_p^{(0)}$) for SiC and $\omega_t \le \omega \le \omega_1$ \blacktriangleright $a = 200 \text{ nm}, \delta = 5 \text{ nm} \rightarrow \frac{\delta}{a} = 0.025$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 0 •	0	0	0

Intermediate distance regime

Intermediate distances $d \approx a$ ($\kappa a \approx 1$) $\blacktriangleright \text{ Im}(r_p^{(2)})/\text{Im}(r_p^{(0)})$ for SiC and $\omega_t \leq \omega \leq \omega_1$

•
$$a = 200 \text{ nm}, \delta = 5 \text{ nm} \rightarrow \frac{\delta}{a} = 0.025$$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 0 •	0	0	0

Intermediate distance regime

Intermediate distances $d \approx a$ ($\kappa a \approx 1$) • Im $(r_p^{(2)})/\text{Im}(r_p^{(0)})$ for SiC and $\omega_t \leq \omega \leq \omega_1$ • $a = 200 \text{ nm}, \delta = 5 \text{nm} \rightarrow \frac{\delta}{a} = 0.025$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model o	Roughness o o	Distance regimes o o	LDOS ●	Heat transfer rate	Summary o o
		0			

Distance dependence of LDOS

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model	Roughness o o	Distance regimes	LDOS •	Heat transfer rate	Summary o o
		0			

Distance dependence of LDOS

Near-field radiative heat transfer between a nanoparticle and a rough surface

Dipole Model o o	Roughness o o	Distance regimes	LDOS •	Heat transfer rate o	Summary o o
		0			

Distance dependence of LDOS

Near-field radiative heat transfer between a nanoparticle and a rough surface

LCFIO, Palaiseau

GRADUATE SCHOOL

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	•	0	0

Distance dependence of LDOS

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	•	0	0

Distance dependence of LDOS

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	•	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	•	0

Distance dependence of heat transfer rate

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	•	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	•	0

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0	0	•	0

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

• ΔP and ΔD non-monotonous (ev. modes)

▶ d ≪ a:

- coincides with PA
- independent of $a, \epsilon, 7$

▶ *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto \frac{\delta^2}{a}$$

effective laye

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P \approx 6 \frac{\delta^2}{d^2}$$

- coincides with PA
- independent of a, ϵ, T

► *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto rac{\delta^2}{a}$$

effective laye

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P \approx 6 rac{\delta^2}{d^2}$$

coincides with PA

- independent of a, ϵ, T
- ► *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto \frac{\delta^2}{a}$$

effective laye

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P \approx 6 rac{\delta^2}{d^2}$$

- coincides with PA
- independent of a, e, T

► *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto \frac{\delta^2}{a}$$

effective laye

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P pprox 6 rac{\delta^2}{d^2}$$

- coincides with PA
- independent of a, e, T
- *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto rac{\delta^2}{a}$$

- effective layer
- intermediate: ΔP , ΔD negative due to SPhP

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P pprox 6 rac{\delta^2}{d^2}$$

- coincides with PA
- independent of a, e, T
- *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto rac{\delta^2}{a}$$

▶ effective layer
 ▶ intermediate: △P, △D negative due to SPhP

Dipole Model o o	Roughness o o	Distance regimes o o	LDOS o	Heat transfer rate o	Summary ● ○
Summary					

△P and △D non-monotonous (ev. modes)
 d ≪ a:

$$\Delta D, \Delta P pprox 6 rac{\delta^2}{d^2}$$

- coincides with PA
- independent of a, e, T
- *d* ≫ *a* (LDA):

$$\Delta D, \Delta P \propto rac{\delta^2}{a}$$

- effective layer
- ► intermediate: △P, △D negative due to SPhP

Dipole Model	Roughness	Distance regimes	LDOS	Heat transfer rate	Summary
0	0	0 0 0	0	0	•

Merci pour votre attention !!!

Near-field radiative heat transfer between a nanoparticle and a rough surface

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
•	0	0	0

- plane-wave representation of E_i, E_r and E_t
- bc via extinction theorem (Rayleigh hypothesis)
- expand with respect to S(x)
- determine Green's dyadic up to second order
- calculate LDOS

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
•	0	0	0
	0		

- plane-wave representation of E_i, E_r and E_t
- bc via extinction theorem (Rayleigh hypothesis)
- expand with respect to S(x)
- determine Green's dyadic up to second order
- calculate LDOS

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
•	0	0	0
	0		

- plane-wave representation of E_i, E_r and E_t
- bc via extinction theorem (Rayleigh hypothesis)
- expand with respect to S(x)
- determine Green's dyadic up to second order
- calculate LDOS

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
•	0	0	0
	0		

- plane-wave representation of E_i, E_r and E_t
- bc via extinction theorem (Rayleigh hypothesis)
- expand with respect to S(x)
- determine Green's dyadic up to second order
- calculate LDOS

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
•	0	0	0
	0		

- plane-wave representation of E_i, E_r and E_t
- bc via extinction theorem (Rayleigh hypothesis)
- expand with respect to S(x)
- determine Green's dyadic up to second order
- calculate LDOS

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
0	•	0	0

s- and p-polarized modes

Propagating modes

Near-field radiative heat transfer between a nanoparticle and a rough surface

LCFIO, Palaiseau

GRADUATE SCHOOL

Perturbation theory	Prop. modes	Evanescent s-polarized modes	NSThM
0	○ [·]	0	0

coupling of s-polarized modes to SPhP

Coupling of prop. modes to SPhP

> s-polarized wave with **E** in y-direction and κ_i

Perturbation theory o	Prop. modes o o	Evanescent s-polarized modes ●	NSThM o

s-polarized modes

Evanescent modes

•
$$\text{Im}(r_s^{(2)})/\text{Im}(r_s^{(0)})$$

Near-field radiative heat transfer between a nanoparticle and a rough surface

Perturbation	theory
0	

Prop. modes

Evanescent s-polarized modes

Near-field Scanning Thermal Microscope

Near-field radiative heat transfer between a nanoparticle and a rough surface

LCFIO, Palaiseau

GRADUATE SCHOOL