

LES des transferts thermo-convectifs turbulents au sein d'un fluide d'Ostwald de Waele dans une conduite cylindrique chauffée

Sourou Paulin GNAMBODE

Paolo ORLANDI*, Myriem OULD ROUIS, Xavier NICOLAS

Modélisation et Simulation Multi Échelle (MSME) UMR CNRS 8208 Université Paris-Est, 77454 Marne-la-Vallée Cedex 2, France

* Dipartimento di Ingegneria Meccanica e Aerospaziale Università La Sapienza, Rome, Italy

- □ Caractériser des modèles LES pour le fluide d'Ostwald de Waele
- **Etude des transferts thermiques**
- □ Influence de divers paramètres (n, Re, Pr, Pn)

Contexte du travail

Fluide d'Ostwald de Waele : $\eta = K \dot{\gamma}^{n-1}$ $K = K_0 e^{Pn(\Theta - \Theta_{moy})}$ $\Theta = \frac{T_p - T}{T_{ref}}$ où le nombre de Pearson $Pn = bT_{ref}$ et $T_{ref} = \phi_p R / \lambda$

 T_{ref} la température de référence, λ la conductivité thermique, ϕ_p le flux de chaleur b le paramètre de thermodépendance.

Contexte du travail

Bibliographie (écoulements turbulents, non-newtoniens)

- Rudman et al. (2004) : DNS, fluides d'Ostwald de Waele/Herschel-Bulkley en tube.
- Malin (1997) : RANS $(k-\epsilon)$, fluides d'Ostwald de Waele en tube.
- Scirocco et al. (1984) : Expérience, écoulement et transfert de chaleur, fluide CMC en tube.
- Ohta et Miyashita (2014) : LES, fluides d'Ostwald de Waele/Casson dans un canal.
- Thais et al. (2010) : Modèle dynamique non-linéaire, fluide viscoélastique dans un canal.

Conclusion : Pas de travaux en LES, fluide d'Ostwald de Waele en tube.

Méthode LES

<u>Principe</u>: Séparation des échelles à l'aide d'un filtre $G_{\Lambda}(x)$ de taille : $\Delta = (r\Delta r\Delta \theta \Delta z)^{1/3}$

<u>Champs filtré</u>: $\bar{f}(x,t) = \int_{-\infty}^{+\infty} f(y,t)G_{\Delta}(x)dy$; <u>Filtre boîte</u>: $G(x) = \begin{cases} 1/\Delta & \text{si } |x| \le \Delta/2 \\ 0 & \text{sinon} \end{cases}$ Equations filtrées (LES) :

<u>**Grandeurs de référence</u>:** R, U_{cL}, ρ U_{cL}, R/U_{cL}, U_{cL}/R respectivement pour la distance, la vitesse, la pression, le temps et le taux de déformation</u>

$$\frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0$$

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial \overline{u}_{i}\overline{u}_{j}}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{1}{\operatorname{Re}_{s}} \frac{\partial}{\partial x_{j}} \left[\overline{\dot{\gamma}}^{n-1} e^{Pn(\overline{\Theta} - \overline{\Theta}_{b})} \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{j}}{\partial x_{i}} \right) \right] + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}} + \frac{\partial \overline{\tau}_{ij}}{$$

Méthode LES

où $\dot{\gamma} = \sqrt{2\bar{S}_{ij}\bar{S}_{ij}} \quad \bar{S}_{ij} = \frac{1}{2} \left[\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right] \quad \operatorname{Re}_s = \frac{\rho U_{cL}^{2-n} R^n}{K} \quad \operatorname{Re}_{MR} = \frac{8\rho \overline{U}^{2-n} D^n}{K(6+2/n)^n}$ $U_{cL} = \frac{(3n+1)\overline{U}}{n+1} \quad \operatorname{Pr}_s = \frac{K_0}{\alpha \rho R^{n-1} U_{cL}^{1-n}} \quad Pe_s = \operatorname{Re}_s \operatorname{Pr}_s$

 \overline{T}_{ii} le tenseur sous-maille supplémentaire pour un fluide non-newtonien.

$$\overline{T}_{ij} = 2K \left(\overline{(2S_{kl}S_{kl})^{\frac{n-1}{n}}S_{ij}} + (2\overline{S}_{kl}\overline{S}_{kl})^{\frac{n-1}{n}}\overline{S}_{ij} \right)$$

Méthode LES

Influence des deux tenseurs sous-maille dans l'écoulement :

Profils des tenseurs sous-maille (tiré de Ohta et Miyashita (2014))

Modélisation des termes sous-maille

lacksquare Tenseur sous-maille : $\overline{\mathcal{T}}_{ii}$

$$\overline{\tau}_{ij} = -2\nu_t \overline{S}_{ij} = -2\nu_t \overline{S}_{ij} = -2\nu_t \overline{S}_{kl} \overline{S}_{kl} \overline{S}_{kl} \overline{S}_{kl} \overline{S}_{ij}^{1/2} \overline{S}_{ij} \text{ avec } \overline{S}_{ij} = \frac{1}{2} \left[\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right]$$
Inconnue???

Modèle dynamique (Germano (1991) et Lilly (1992)) :

$$C_{d} = \frac{1}{2\Delta^{2}} \frac{\left\langle L_{ij} M_{ij} \right\rangle}{\left\langle M_{ij} M_{ij} \right\rangle} \quad L_{ij} = -2C_{d} \Delta^{2} M_{ij} \quad M_{ij} = \frac{\widetilde{\Delta}^{2}}{\Delta^{2}} \left| \widetilde{\overline{S}} \right| \widetilde{\overline{S}}_{ij} - \left| \widetilde{\overline{S}} \right| \widetilde{\overline{S}}_{ij}$$

modèle de Smagorinsky non-newtonien développé par Ohta et Miyashita (2014) :

$$\mathcal{V}_{t} = \left(C_{s}f_{s}f_{\eta}\Delta\right)^{2}\overline{S}_{ij} \quad \text{avec} \quad f_{\eta} = \frac{\eta}{\eta_{w}} \quad f_{s} = 1 - \exp\left(\frac{Y^{+}}{25}\right) C_{s} = 0,1$$

□ Flux de chaleur sous-maille : $\overline{\mathcal{T}}_{\Theta j}$: modèle du nombre de Prandtl turbulent constant $\overline{\overline{\tau}}_{\Theta j} = -\alpha_t \frac{\partial \overline{\Theta}}{\partial x_j}$ avec $\alpha_t = \frac{V_t}{\Pr_t}$ □ Estimations (modèle dyn.) : $\Pr_t = 1,5$ pour n=0,75 et $\Pr_t = 0,7$ pour n=1 et 1,2. 8

Méthode numérique

 Code : DNS newtonien (P. Orlandi)
 Ma contribution : adaptation au fluide d'Ostwald de Waele programmation du modèle de Smagorinsky non-newtonien

□ Maillage $(N_{\Theta} \times N_r \times N_z)$: 65x65x65

 Discrétisation des équations : différences finies, schéma centré d'ordre 2 en espace et en temps.

Méthode de résolution : méthode à pas de temps fractionné de Kim et Moin (1985) et modifiée par Verzicco et Orlandi (1996) ; schéma hybride de Runge-Kutta/Crank-Nicolson (termes convectif/diffusif).

□ Pas de temps adimensionnel :
$$\Delta t^* = \frac{\Delta t U_{cL}}{R} \approx 10^{-2}$$

✓ Viscosité moyenne : $\eta = K\dot{\gamma}^{n-1}$

✓ Visualisation 3D des fluctuations de V_z :

n=0,69

✓ Vitesse et température moyenne :

✓ RMS des fluctuations de vitesse et de température : Elles sont définies par : $RMS(U'_i) = \sqrt{\overline{U_i'}^2}$; $RMS(\Theta') = \sqrt{\overline{\Theta'}^2}$ où $i = r, \theta, z$

✓ Flux de chaleur turbulent :

✓ Coefficient de frottement (Re_s=4000) :

$$f = 2\tau_w / (\rho \overline{U}^2)$$

	f.10 ³	n=0,75	n=1,00	n=1,20
LES	Présent travail	8,85	10,46	12,54
Corrélation exp.	Dodge et Metzner (1959) : f _{DM}	7,75	9,58	10,53
Corrélation exp.	Frank, Schuk et Gomes (1987) : f _{FSG}	8,06	8,44	-
Corrélation exp.	Ostwald de Waele et Gomes (1987) : f_{OWG}	8,25	9,99	-
Corrélation exp.	Hanks et Ricks (1975) : f _{HR}	8,18	9,73	-
DNS	Rudman et al. (2004)	8,05	-	-
Ecart relatif DNS/LES			-	-
Ecart relatif maximum avec les expériences			23%	19%

$$f_{DM} = a / \operatorname{Re}_{MR}^{b} \text{ avec } a = 0,0665 + 0,0175n \text{ et } b = 0,365 - 0,177n + 0,062n^{2}$$

$$f_{FSG} = 0,11n^{0,616} \operatorname{Re}_{MR}^{-0,287}; f_{OWG} = 0,069n^{0,666} \operatorname{Re}_{MR}^{-0,233}; f_{HR} = 0,0682n^{-0.5} / \operatorname{Re}_{MR}^{1/(1,87+2,39n)}$$

✓ Nombre de Nusselt (Re_s=4000) : Nu = hD/k

n	Pr _s	Présent travail	Quaresma (1998) (numérique)	Pinho et Coelho (2010) (exp.)
0,70	100	109,69	111,94	96,43
0,70	11	45,41	45,30	45,21
1,00	1	18,45	-	18,30
1,20	1	17,75	-	14,77
Ecart relatif maximum LES/références		0,2% (Pr _s =11) 2% (Pr _s =100)	0,8% à 18,7% ($Pr_s=1$) 0,2% ($Pr_s=11$) à 13,7% ($Pr_s=100$)	

- Pinho et Coelho (2010) : $Nu = 0.0152 \operatorname{Re}_{MR}^{0.845} \operatorname{Pr}_{MR}^{0.3334}$

- ✓ Influence du nombre de Prandtl :
- Pas d'influence sur la vitesse, les rms de fluctuations de vitesse et la tension de Reynolds,
- Forte augmentation de la température lorsque le nombre Prandtl croît,
- Au même nombre de Prandtl, les fluides rhéoépaississants sont plus chauds que les fluides rhéofluidifiants.

Ecoulements thermodépendants (Pn≠0)

Conclusion et perspectives

✓ Conclusion :

- Bon accord de nos prédictions LES avec les résultats de la littérature (DNS, expériences et solutions analytiques);
- Les prédictions du modèle de Smagorinsky non-newtonien (Ohta et Miyashita (2014)) sont meilleures que celles du modèle dynamique de Germano et al. (1991) et Lilly (1992);
- Nos prédictions LES pour n<0,7 confirment les conclusions de Rudman et al. (2004) qui ont rapporté que la turbulence est moins développée pour cet indice d'écoulement.

✓ perspectives :

- Etude de l'effet de Pr et Re en écoulement thermodépendant turbulent;
- Etude de l'effet de la thermodépendance sur l'écoulement turbulent d'un fluide dilatant (n=1,2)
- Utilisation d'autres modèles LES pour approcher les termes sous-mailles.
- Simulation numérique directe pour simuler ces écoulements

Merci pour votre attention

Ecoulements thermodépendants (Pn≠0)

Nombre d'itératio ns	Pn	Coef. frotteme nt (10 ⁻³)	Nbre de Nusselt	Viscosité au centre du tube	Viscosité à la paroi
convergé	0	8,850	17,16	1,342	0,628
200	0,5	7,796	17,22	1,272	0,541
310	0,5	8,199	17,28	1,171	0,546
200	1	7,391	14,95	1,367	0,530
310	1	7,679	15,08	1,228	0,545

✓ Vitesse moyenne (validation expérimentale) :

✓ Coefficients de dissymétrie et d'aplatissement :

✓ Evolution de la viscosité turbulente

✓ Influence du nombre de Reynolds :

Coef. frottement	n=0,8	n=1,0	n=1,2
Re _s =4000	9,24	10,46	12,69
Re _s =8000	7,18	8,23	10,94
Re _s =12000	6,03	7,05	9,52

Simulations sous ANSYS-FLUENT CFD

Propriétés du fluide : n=0,75; K=0,32 kg.m⁻¹.s⁻¹; ρ=992 kg/m³ Vitesse moyenne=3,24 m/s et intensité de turbulence : IT=2%

Résultats avec le modèle lkES2 Phodèle dynamique

Influence de Pr pour n=1; Res=4000: Tableau

Pr	Présent travail	Redje	em (2008)	Gnielinski (1976) Dittu		s et Boelter (1930)		
0,71	18,87	19,36		18,02		20,81		
1,00	21,18	22,30		20,69		23,87		
1,50	25,86	-		24,24		28,07		
2,00	29,23	-		27,05			31,49	
3,00	34,76	-		31,47		37,04		
7,00	49,51	-		42,78		51,99		
8,00	52,30	-		44,86		54,87		
	n		Rurtem	oérature	Ruru	IZ	Ruztempérature	
0,75		0,407		0,46	1	0,902		
1,00		0,421		0,469		0,851		
1,20		0,429		0,450		0,828		
Redjem (2008) n=1, Re=5500 et Pr=0,71		0,460		0,470		-		
Ecart relatif entre DNS/LES		9,52%		0,2%	6			