universite

POLYTECH ${ }^{\circ}$ MARSEILLE

Simulations numériques d'instabilités thermo-convectives de fluides à seuil (modèle de Bingham) par Méthode Asymptotique Numérique

Marc MEDALE ${ }^{(1)}$ and Bruno COCHELIN ${ }^{(2)}$

${ }^{1}$ Aix-Marseille University and CNRS, IUSTI UMR 7343,
${ }^{2}$ Centrale Marseille and CNRS, LMA UPR 7051, bruno.cochelin@centrale-marseille.fr

Key issues to be overcome

- Visco-plastic (yield stress) modelling:
- Augmented lagrangian techniques (Dean, Glowinski, Guidoboni, 2007)
- Regularisation techniques (Bercovier \& Engelman, 1980), (Frigaard \& Nouar, 2005), etc.
- A reliable and computationally efficient coupled velocity-pressure formulation:
- Discontinuous strain: only local approximations
- Highly non-linear behaviour: challenging implementation of non-linear algorithm (tricky jacobian, etc.)
- High computational costs in 3D (CPU \approx Neq. $\mathrm{L}_{\mathrm{b}}{ }^{2}$)
- Cost_Augmented Lagrangian ≈ 16 x Cost_Regularization

Governing equations

- Conservation equations

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{V}=0 \\
\vec{V} \cdot \nabla \vec{V}=-\vec{\nabla} p+\frac{1}{R e} \vec{\nabla} \cdot \overline{\bar{\tau}}+\frac{R a}{R e^{2} P r} \theta \overrightarrow{e_{z}} \\
\vec{V} \cdot \vec{\nabla} \theta=\frac{1}{R e P r} \vec{\nabla} \cdot(\vec{\nabla} \theta)
\end{gathered}
$$

- Constitutive equations: Bingham model

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tau(\vec{V}) \leq B n \Longleftrightarrow \dot{\gamma}(\vec{V})=0 \\
\tau(\vec{V})>B n \Longleftrightarrow \overline{\bar{\tau}}(\vec{V})=\left[1+\frac{B n}{\dot{\gamma}(\vec{V})}\right] \overline{\dot{\gamma}}(\vec{V})
\end{array}\right. \\
& \tau(\vec{V})=\left[\frac{1}{2}(\overline{\bar{\tau}}: \overline{\bar{\tau}})\right]^{\frac{1}{2}} ; \quad \dot{\gamma}(\vec{V})=\left[\frac{1}{2}(\overline{\bar{\gamma}}: \overline{\dot{\gamma}})\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
R e=\frac{\rho V_{r e f}, L_{r e f}}{\mu_{0}} \quad ; \quad R a=\frac{g \beta \Delta T_{r e f} L_{r e f}^{3}}{\nu \alpha} \quad ; \quad \operatorname{Pr}=\frac{\nu}{\alpha} \quad ; \quad B n=\frac{\tau_{0} L_{r e f}}{\mu_{0} V_{r e f}} \quad ; \quad \theta=\frac{T-T_{r e f}}{\Delta T_{r e f}} \quad 3
$$

Regularization techniques

$$
\overline{\bar{\tau}}(\vec{V})=\left[1+\frac{B n}{\dot{\gamma}_{\eta}(\vec{V})}\right] \overline{\bar{\gamma}}(\vec{V})
$$

- Simple regularization:

$$
\dot{\gamma}_{\eta}(\vec{V})=\left[\frac{1}{2}(\overline{\bar{\gamma}}: \overline{\dot{\gamma}})\right]^{\frac{1}{2}}+\eta
$$

- Bercovier-Engelmann regularization:

$$
\dot{\gamma}_{\eta}(\vec{V})=\left[\frac{1}{2}(\overline{\bar{\gamma}}: \overline{\bar{\gamma}})+\eta^{2}\right]^{\frac{1}{2}}
$$

- Papanastasiou regularization:

$$
\frac{B n}{\dot{\gamma}}=\frac{B n\left(1-e^{-\frac{\dot{\gamma}}{\eta}}\right)}{\dot{\gamma}}
$$

Regularization results (1/2)

- Vertical chute flow: Error localization (4/5)

\rightarrow All regularizations except the proposed one present spurious oscillations on $\frac{d w}{d y}$ and τ.

Regularization accuracy \& perf

\rightarrow Simple regularization is the worst one in terms of error
\rightarrow The other regularizations have qualitatively the same behavior
\rightarrow Our method exhibits a better behavior for the finest mesh (e/10)
\rightarrow Simple and proposed regularizations converge faster than BE and Papanastasiou

ANM continuation algorithm

- Bifurcation diagram usually consists in performing a sequence of two steps:
- Compute base state associated to a given value of control parameters;
- Compute linear stability of the given base state
- Continuation is performed with our steady state ANM continuation algorithm ${ }^{1}$:
- Fully coupled velocity-pressure (Q2-Q-1 approx., H27 FE)
- No stabilization
${ }^{1}$ B. Cochelin and M. Medale. Power series analysis as a major breakthrough to improve the efficiency of Asymptotic Numerical Method in the vicinity of bifurcations. J. Comput. Phys. Vol. 236, 594-607, 2013.

Asymptotic Numerical method (1)

General non-linear quadratic form:

$$
\begin{equation*}
\mathrm{R}(\mathrm{U}, \lambda)=\mathrm{L}(\mathrm{U})+\mathrm{Q}(\mathrm{U}, \mathrm{U})-\lambda \mathrm{F}=0 \tag{1}
\end{equation*}
$$

Expand unknowns ($\mathrm{U}, \boldsymbol{\lambda}$) with respect to path parameter s:

$$
\left\{\begin{array}{l}
U(s)=U_{0}+s U_{1}+s^{2} U_{2}+s^{3} U_{3}+s^{4} U_{4}+\ldots+s^{n} U_{n} \tag{2}\\
\lambda(s)=\lambda_{0}+s \lambda_{1}+s^{2} \lambda_{2}+s^{3} \lambda_{3}+s^{4} \lambda_{4}+\ldots+s^{n} \lambda_{n} \\
\left(\mathrm{U}, \lambda_{0}\right. \text { heen known }
\end{array}\right.
$$

$\left(\mathrm{U}_{0}, \lambda_{0}\right)$ been known.
Parameterizations:

- Bifurcation type: $\mathrm{s}=\left(\mathrm{U}-\mathrm{U}_{0}\right) \cdot \mathrm{U}_{1}+\left(\lambda-\lambda_{0}\right) \lambda_{1} \quad($ Cochelin, 1994)
- Minimal residual: $\lambda_{\mathrm{n}}=\operatorname{Min}(\operatorname{Res}(\mathrm{n}+1)) \quad$ (Lopez, 2000)

Asymptotic Numerical Method (2)

Inserting (2-3) in $(1,4)$ and equating like powers of s :
$\operatorname{Order} 1\left\{\begin{array}{c}\mathrm{L}_{\mathrm{t}}\left(\mathrm{U}_{1}\right)=\lambda_{1} \mathrm{~F} \\ <\mathrm{U}_{1}, \mathrm{U}_{1}>+\lambda_{1}^{2}=1\end{array}\right.$
$\operatorname{Order} 2\left\{\begin{array}{c}\mathrm{L}_{\mathrm{t}}\left(\mathrm{U}_{2}\right)=\lambda_{2} \mathrm{~F}-\mathrm{Q}\left(\mathrm{U}_{1}, \mathrm{U}_{1}\right) \\ <\mathrm{U}_{1}, \mathrm{U}_{2}>+\lambda_{1} \lambda_{2}=0\end{array}\right.$

Order $\mathrm{n}\left\{\begin{array}{c}\mathrm{L}_{\mathrm{t}}\left(\mathrm{U}_{\mathrm{n}}\right)=\lambda_{\mathrm{n}} \mathrm{F}-{\underset{r-1}{n-1}}_{\mathrm{r}}^{\mathrm{r}-1} \mathrm{Q}\left(\mathrm{U}_{\mathrm{r}}, \mathrm{U}_{\mathrm{n}-\mathrm{r}}\right) \\ <\mathrm{U}_{1}, \mathrm{U}_{\mathrm{n}}>+\lambda_{1} \lambda_{\mathrm{n}}=0\end{array}\right.$

FEM Spatial Discretization:

Asymptotic Numerical Method (3)

Asymptotic expansion coefficients:

$$
\begin{gathered}
I_{\tau}=\int_{\Omega} \delta \overline{\bar{\varepsilon}}^{\prime}\left[\left(1+D_{0}\right) \overline{\dot{\gamma}}_{p}+D_{p} \overline{\dot{\gamma}}_{0}+\sum_{r=1}^{p-1} D_{r} \overline{\dot{\gamma}}_{(p-r)}\right] d \Omega \\
D_{0}=\frac{B n}{\dot{\gamma}_{0}} ; \quad D_{1}=-\frac{D_{0} \dot{\gamma}_{1}}{\dot{\gamma}_{0}} ; \quad D_{p}=-\frac{1}{\dot{\gamma}_{0}}\left[D_{0} \dot{\gamma}_{p}+\sum_{r=1}^{p-1} D_{r} \dot{\gamma}_{(p-r)}\right] \\
\dot{\gamma}_{0}=\left[\frac{1}{2}\left(\overline{\dot{\gamma}}_{0}: \overline{\dot{\gamma}}_{0}\right)+\eta^{2}\right]^{\frac{1}{2}} ; \dot{\gamma}_{1}=\frac{\overline{\dot{\gamma}}_{0}: \overline{\dot{\gamma}}_{1}}{2 \dot{\gamma}_{0}} ; \dot{\gamma}_{p}=\frac{1}{2 \dot{\gamma}_{0}}\left[\overline{\dot{\gamma}}_{0}: \overline{\dot{\gamma}}_{p}+\frac{1}{2} \sum_{r=1}^{p-1} \overline{\dot{\gamma}}_{r}: \overline{\dot{\gamma}}_{(p-r)}-\sum_{r=1}^{p-1} \dot{\gamma}_{r} \dot{\gamma}_{(p-r)}\right] \\
I_{\tau}=\int_{\Omega} \delta \overline{\bar{\varepsilon}}:\left[\left(1+D_{0}\right) \overline{\dot{\gamma}}_{p}-\frac{\overline{\dot{\gamma}}_{0}}{\dot{\gamma}_{0}}\left\{\frac{D_{0}}{2 \dot{\gamma}_{0}}\left(\overline{\bar{\gamma}}_{0}: \overline{\dot{\gamma}}_{p}+\frac{1}{2} \sum_{r=1}^{p-1} \overline{\dot{\gamma}}_{r}: \overline{\dot{\gamma}}_{(p-r)}^{p-1}-\sum_{r=1}^{p-1} \dot{\gamma}_{r} \dot{\gamma}_{(p-r)}\right)+\right.\right. \\
\left.\left.\sum_{r=1}^{p-1} D_{r} \dot{\gamma}_{(p-r)}\right\}+\sum_{r=1}^{p-1} D_{r} \overline{\dot{\gamma}}_{(p-r)}\right] d \Omega
\end{gathered}
$$

Bifurcation point detection

- In the ANM geometrical power series arises close to BP
- Geometric progression detection algorithm:

$$
\begin{aligned}
& \text { for } n-3 \leq p \leq n-1 \\
& \quad \alpha_{p}=\left(U_{p} \cdot U_{n}\right) /\left(U_{n} \cdot U_{n}\right) \\
& \quad U_{p}^{\perp}=U_{p}-\alpha_{p} U_{n} \\
& \text { if } \sum_{p=n-3}^{n-2}\left(\left(\alpha_{p}^{1 /(n-p)}-\alpha_{n-1}\right) / \alpha_{n-1}\right)^{2}<\varepsilon_{g p_{1}} \\
& \text { and } \sum_{p=n-3}^{n-1}\left\|U_{p}^{\perp}\right\| /\left\|U_{p}\right\|<\varepsilon_{g p_{2}}
\end{aligned}
$$

- If test satisfied (colinearity, proportionality), one computes
- its common ratio: $\alpha=\alpha_{n-1} \approx 1 / r$
- its scale factor: $U_{t_{1}}^{\perp}=U_{n} / \alpha^{n}$

Bifurcation point computation

branch switching

- Solution at bifurcation point:

$$
\begin{aligned}
& U_{B P}=U\left(s=\frac{1}{\alpha}\right)=U_{0}+\frac{1}{\alpha} \hat{U}_{1}+\frac{1}{\alpha^{2}} \hat{U}_{2}+\cdots+\frac{1}{\alpha^{n-1}} \hat{U}_{n-1} \\
& \text { with } \quad \hat{U}_{p}=U_{p}-\alpha^{p} U_{t_{1}}^{\perp}
\end{aligned}
$$

- Tangent vector to branch 1:

$$
U_{t_{1}}=\frac{\partial U}{\partial s}\left(s=\frac{1}{\alpha}\right)=\hat{U}_{1}+\frac{2}{\alpha} \hat{U}_{2}+\cdots+\frac{n-1}{\alpha^{n-2}} \hat{U}_{n-1}
$$

- Tangent vector to branch 2 :

$$
\begin{aligned}
& U_{t_{2}}=\beta U_{t_{1}}+\gamma U_{t_{1}}^{\perp} \\
& \psi^{T} R_{, U U}^{c} U_{t_{2}} U_{t_{2}}=0
\end{aligned}
$$

Confined Rayleigh-Benard

- Parallelepipedic computational domain: $\mathrm{L} / \mathrm{h}=10 ; 1 / \mathrm{h}=4$
- Spatial discretization: 180x72x18 H27 Q2 FE (7 747060 dof)
- ANM parameters: $10 \leq \mathrm{n} \leq 50 ; \delta=10^{-9} ; \varepsilon_{\mathrm{gp1}}=10^{-3}$ and $\varepsilon_{\mathrm{gp1}}=10^{-6}$; 1 NR end-of-step correction if Res $>10^{-6}$
- HPC: Petsc + MUMPS + BULL Bullx S6010 supercomputer (128 cores, 2 To RAM)
- fact. time: 45 mn (on 64 cores)
- av. cont. step ($\mathrm{n} \approx 50$): 50 mn (on 64 cores)

Rayleigh-Benard in a box

Newtonian fluid: $\mathrm{Pr}=9$

1st bifurcation mode: $\mathrm{Ra}_{\mathrm{cl}}=1747.4$

3rd bifurcation mode: $\mathrm{Ra}_{\mathrm{c} 3}=1773.9$

4th bifurcation mode: $\mathrm{Ra}_{\mathrm{c} 4}=1805.7$

Rayleigh-Benard in a box

Newtonian fluid: $\mathrm{Pr}=9$

5th bifurcation mode: $\mathrm{Ra}_{\mathrm{c} 5}=1810.9$

7th bifurcation mode: $\mathrm{Ra}_{\mathrm{c} 7}=1817.2$

Rayleigh-Benard in a box

Bingham fluid: $\mathrm{Pr}=9, \mathrm{Bn}=1$

Summary

- 3D Steady-State Solver for incompressible fluid flows
- Continuation method (ANM predictor - NR corrector) to perform bifurcation diagram and accurately locate bifurcation points
- Efficient and scalable parallel implementation for problems up to several millions of dof
- Rayleigh-Benard in a box ($\Gamma_{\mathrm{x}}=10, \Gamma_{\mathrm{y}}=4$)
- Detailed results for Newtonian fluids ($\mathrm{Pr}=9$)
- Preliminary results for a Bingham fluid $(\operatorname{Pr}=9, B n=1)$
- Future works:
- Nature of bifurcations, linear stability analysis
- High multiplicity bifurcation points, Hopf bifurcation

Asymptotic Numerical Method (6)

ANM : Perturbation method + F.E.M.

- Optimal step length (Cochelin, 1994, 2003) :

$$
\mathrm{s}_{\mathrm{opt}}=\left(\varepsilon\left\|\mathrm{F}_{1}\right\| /\left\|\mathrm{F}_{\mathrm{nl}}(\mathrm{n}+1)\right\|\right)^{(1 / \mathrm{n}+1)}
$$

- Enables us to describe one part of the branch
- Loop with new starting point $\left(\mathrm{U}\left(\mathrm{s}=\mathrm{s}_{\text {opt }}\right), \lambda\left(\mathrm{s}=\mathrm{s}_{\text {opt }}\right)\right)$

High order predictor method, Newton based corrector

Main features:

- Parameter free continuation technique (ε, n)
- Analytical representation of quadratic non-linearities
- Power series contain substantial informations

